Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadj4198, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862421

RESUMEN

Virus-induced changes in host lipid metabolism are an important but poorly understood aspect of viral pathogenesis. By combining nontargeted lipidomics analyses of infected cells and purified extracellular quasi-enveloped virions with high-throughput RNA sequencing and genetic depletion studies, we show that hepatitis A virus, an hepatotropic picornavirus, broadly manipulates the host cell lipid environment, enhancing synthesis of ceramides and other sphingolipids and transcriptionally activating acyl-coenzyme A synthetases and fatty acid elongases to import and activate long-chain fatty acids for entry into the fatty acid elongation cycle. Phospholipids with very-long-chain acyl tails (>C22) are essential for genome replication, whereas increases in sphingolipids support assembly and release of quasi-enveloped virions wrapped in membranes highly enriched for sphingomyelin and very-long-chain ceramides. Our data provide insight into how a pathogenic virus alters lipid flux in infected hepatocytes and demonstrate a distinction between lipid species required for viral RNA synthesis versus nonlytic quasi-enveloped virus release.


Asunto(s)
Hepatovirus , ARN Viral , Hepatovirus/metabolismo , ARN Viral/genética , Replicación de ARN , Liberación del Virus , Replicación Viral/fisiología , Ácidos Grasos/metabolismo , Esfingolípidos , Ceramidas
2.
Biophys J ; 122(18): 3656-3677, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37207658

RESUMEN

To facilitate rapid changes in morphology without endangering cell integrity, each cell possesses a substantial amount of cell surface excess (CSE) that can be promptly deployed to cover cell extensions. CSE can be stored in different types of small surface projections such as filopodia, microvilli, and ridges, with rounded bleb-like projections being the most common and rapidly achieved form of storage. We demonstrate that, similar to rounded cells in 2D culture, rounded cells in 3D collagen contain large amounts of CSE and use it to cover developing protrusions. Upon retraction of a protrusion, the CSE this produces is stored over the cell body similar to the CSE produced by cell rounding. We present high-resolution imaging of F-actin and microtubules (MTs) for different cell lines in a 3D environment and demonstrate the correlated changes between CSE and protrusion dynamics. To coordinate CSE storage and release with protrusion formation and motility, we expect cells to have specific mechanisms for regulating CSE, and we hypothesize that MTs play a substantial role in this mechanism by reducing cell surface dynamics and stabilizing CSE. We also suggest that different effects of MT depolymerization on cell motility, such as inhibiting mesenchymal motility and enhancing amoeboid, can be explained by this role of MTs in CSE regulation.


Asunto(s)
Actinas , Colágeno , Actinas/metabolismo , Membrana Celular/metabolismo , Colágeno/metabolismo , Microtúbulos/metabolismo , Seudópodos/metabolismo , Movimiento Celular/fisiología , Extensiones de la Superficie Celular
3.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35969644

RESUMEN

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Virus de la Hepatitis A , Animales , Proteínas de Unión al Calcio/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Mamíferos , Proteínas Virales/metabolismo
4.
Free Radic Biol Med ; 166: 90-103, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600943

RESUMEN

The nuclear localized protein deacetylase, SIRT6, has been identified as a crucial regulator of biological processes that drive aging. Among these processes, SIRT6 can promote resistance to oxidative stress conditions, but the precise mechanisms remain unclear. The objectives of this study were to examine the regulation of SIRT6 activity by age and oxidative stress and define the role of SIRT6 in maintaining redox homeostasis in articular chondrocytes. Although SIRT6 levels did not change with age, SIRT6 activity was significantly reduced in chondrocytes isolated from older adults. Using dimedone-based chemical probes that detect oxidized cysteines, we identified that SIRT6 is oxidized in response to oxidative stress conditions, an effect that was associated with reduced SIRT6 activity. Enhancement of SIRT6 activity through adenoviral SIRT6 overexpression specifically increased the basal levels of two antioxidant proteins, peroxiredoxin 1 (Prx1) and sulfiredoxin (Srx) and decreased the levels of an inhibitor of antioxidant activity, thioredoxin interacting protein (TXNIP). Conversely, in chondrocytes derived from mice with cartilage specific Sirt6 knockout, Sirt6 loss decreased Prx1 levels and increased TXNIP levels. SIRT6 overexpression decreased nuclear-generated H2O2 levels and oxidative stress-induced accumulation of nuclear phosphorylated p65. Our data demonstrate that SIRT6 activity is altered with age and oxidative stress conditions associated with aging. SIRT6 contributes to chondrocyte redox homeostasis by regulating specific members of the Prx catalytic cycle. Targeted therapies aimed at preventing the age-related decline in SIRT6 activity may represent a novel strategy to maintain redox balance in joint tissues and decrease catabolic signaling events implicated in osteoarthritis (OA).


Asunto(s)
Fenómenos Biológicos , Cartílago Articular , Sirtuinas , Anciano , Animales , Cartílago Articular/metabolismo , Condrocitos , Homeostasis , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Oxidación-Reducción , Estrés Oxidativo , Sirtuinas/genética , Sirtuinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(44): 27598-27607, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33060297

RESUMEN

Human rhinoviruses (RVs) are positive-strand RNA viruses that cause respiratory tract disease in children and adults. Here we show that the innate immune signaling protein STING is required for efficient replication of members of two distinct RV species, RV-A and RV-C. The host factor activity of STING was identified in a genome-wide RNA interference (RNAi) screen and confirmed in primary human small airway epithelial cells. Replication of RV-A serotypes was strictly dependent on STING, whereas RV-B serotypes were notably less dependent. Subgenomic RV-A and RV-C RNA replicons failed to amplify in the absence of STING, revealing it to be required for a step in RNA replication. STING was expressed on phosphatidylinositol 4-phosphate (PI4P)-enriched membranes and was enriched in RV-A16 compared with RV-B14 replication organelles isolated in isopycnic gradients. The host factor activity of STING was species-specific, as murine STING (mSTING) did not rescue RV-A16 replication in STING-deficient cells. This species specificity mapped primarily to the cytoplasmic, ligand-binding domain of STING. Mouse-adaptive mutations in the RV-A16 2C protein allowed for robust replication in cells expressing mSTING, suggesting a role for 2C in recruiting STING to RV-A replication organelles. Palmitoylation of STING was not required for RV-A16 replication, nor was the C-terminal tail of STING that mediates IRF3 signaling. Despite co-opting STING to promote its replication, interferon signaling in response to STING agonists remained intact in RV-A16 infected cells. These data demonstrate a surprising requirement for a key host mediator of innate immunity to DNA viruses in the life cycle of a small pathogenic RNA virus.


Asunto(s)
Enterovirus/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Proteínas de la Membrana/metabolismo , Replicación Viral/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Resfriado Común/inmunología , Resfriado Común/virología , Enterovirus/genética , Enterovirus/inmunología , Enterovirus/metabolismo , Células HeLa , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Lipoilación , Proteínas de la Membrana/agonistas , Mutación , Dominios Proteicos/genética , Transducción de Señal , Especificidad de la Especie , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
J Biol Chem ; 295(28): 9297-9298, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651283

RESUMEN

Recent research has revealed that an adhesion complex based on cadherins and the motor protein myosin-7b (MYO7B) links the tips of intestinal microvilli. Choi et al. now report that a largely uncharacterized protein known as calmodulin-like protein 4 (CALML4) is a component of this adhesion complex and functions as a light chain for myosin-7b. Because the intermicrovillar adhesion complex is homologous to the myosin-7a (MYO7A)-based Usher syndrome complex and Choi et al. also report that CALML4 can bind to myosin-7a, this work also has important implications for research on myosin-7a and hereditary deaf-blindness.


Asunto(s)
Miosina VIIa , Síndromes de Usher , Cadherinas/metabolismo , Dineínas , Humanos , Cadenas Ligeras de Miosina
7.
Nat Microbiol ; 5(9): 1069-1078, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32451473

RESUMEN

The Picornaviridae are a diverse family of positive-strand RNA viruses that includes numerous human and veterinary pathogens1. Among these, hepatitis A virus (HAV), a common cause of acute hepatitis in humans, is unique in that it is hepatotropic and is released from hepatocytes without lysis in small vesicles that resemble exosomes2,3. These quasi-enveloped virions are infectious and are the only form of virus that can be detected in the blood during acute infection2. By contrast, non-enveloped naked virions are shed in faeces and stripped of membranes by bile salts during passage through the bile ducts to the gut4. How these two distinct types of infectious hepatoviruses enter cells to initiate infection is unclear. Here, we describe a genome-wide forward screen that shows that glucosylceramide synthase and other components of the ganglioside synthetic pathway are crucial host factors that are required for cellular entry by hepatoviruses. We show that gangliosides-preferentially disialogangliosides-function as essential endolysosome receptors that are required for infection by both naked and quasi-enveloped virions. In the absence of gangliosides, both virion types are efficiently internalized through endocytosis, but capsids fail to uncoat and accumulate within LAMP1+ endolysosomes. Gangliosides relieve this block, binding to the capsid at low pH and facilitating a late step in entry involving uncoating and delivery of the RNA genome to the cytoplasm. These results reveal an atypical cellular entry pathway for hepatoviruses that is unique among picornaviruses.


Asunto(s)
Endosomas/metabolismo , Gangliósidos/genética , Gangliósidos/metabolismo , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Endocitosis , Exosomas , Técnicas de Inactivación de Genes , Genoma Viral , Células HeLa , Hepatocitos/metabolismo , Humanos , Proteínas de Membrana de los Lisosomas , Lisosomas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Virión/metabolismo , Internalización del Virus
8.
Biophys J ; 117(5): 791-792, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31422823

Asunto(s)
Membrana Celular
9.
J Cell Sci ; 129(24): 4633-4643, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27831495

RESUMEN

Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of ß- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that ß-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the ß-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Luz , Modelos Biológicos , Citoesqueleto de Actina/efectos de la radiación , Animales , Axones/metabolismo , Axones/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/metabolismo , Humanos
10.
PLoS Comput Biol ; 12(3): e1004841, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27015526

RESUMEN

Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D) or the "seed and growth" model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.


Asunto(s)
Tamaño de la Célula , Extensiones de la Superficie Celular/química , Extensiones de la Superficie Celular/ultraestructura , Fluidez de la Membrana , Modelos Químicos , Modelos Moleculares , Animales , Células CHO , Simulación por Computador , Cricetulus
11.
Cytoskeleton (Hoboken) ; 72(6): 268-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26147497

RESUMEN

We investigate the dynamics of cell shape and analyze the actin and myosin distributions of cells exhibiting cortical density traveling waves. These waves propagate by repeated cycles of cortical compression (folding) and dilation (unfolding) that lead to periodic protrusions (oscillations) of the cell boundary. The focus of our detailed analysis is the remarkable periodicity of this phenotype, in which both the overall shape transformation and distribution of actomyosin density are repeated from cycle to cycle even though the characteristics of the shape transformation vary significantly for different regions of the cell. We show, using correlation analysis, that during traveling wave propagation cortical actin and plasma membrane densities are tightly coupled at each point along the cell periphery. We also demonstrate that the major protrusion appears at the wave trailing edge just after the actin cortex density has reached a maximum. Making use of the extraordinary periodicity, we employ latrunculin to demonstrate that sequestering actin monomers can have two distinct effects: low latrunculin concentrations can trigger and enhance traveling waves but higher concentrations of this drug retard the waves. The fundamental mechanism underlying this periodically protruding phenotype, involving folding and unfolding of the cortex-membrane couple, is likely to hold important clues for diverse phenomena including cell division and amoeboid-type migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Forma de la Célula , Estadística como Asunto
12.
Cell Rep ; 11(3): 433-45, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25865895

RESUMEN

Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer-binding protein thymosin ß4 (Tß4) for optimal leading-edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tß4 and appears to regulate lamellipodia homeostasis. Tß4-bound G-actin specifically localizes to the leading edge because it does not interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Seudópodos/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Técnicas de Silenciamiento del Gen , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Confocal
13.
PLoS One ; 8(1): e52233, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300967

RESUMEN

The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Actinas/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Mesilato de Imatinib , Microscopía de Interferencia , Miosinas/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/metabolismo , Ratas , Resistencia al Corte , Estrés Mecánico , Células Tumorales Cultivadas , Vejiga Urinaria/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
14.
J Cell Biol ; 200(1): 95-108, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23295349

RESUMEN

Rapid changes in cellular morphology require a cell body that is highly flexible yet retains sufficient strength to maintain structural integrity. We present a mechanism that meets both of these requirements. We demonstrate that compression (folding) and subsequent dilation (unfolding) of the coupled plasma membrane-cortex layer generates rapid shape transformations in rounded cells. Two- and three-dimensional live-cell images showed that the cyclic process of membrane-cortex compression and dilation resulted in a traveling wave of cortical actin density. We also demonstrate that the membrane-cortex traveling wave led to amoeboid-like cell migration. The compression-dilation hypothesis offers a mechanism for large-scale cell shape transformations that is complementary to blebbing, where the plasma membrane detaches from the actin cortex and is initially unsupported when the bleb extends as a result of cytosolic pressure. Our findings provide insight into the mechanisms that drive the rapid morphological changes that occur in many physiological contexts, such as amoeboid migration and cytokinesis.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular/fisiología , Forma de la Célula/fisiología , Estrés Fisiológico/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Ratones , Células 3T3 NIH
15.
Biophys J ; 99(4): 1053-63, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20712988

RESUMEN

When microtubules are depolymerized in spreading cells, they experience morphological oscillations characterized by a period of about a minute, indicating that normal interactions between the microfilament and microtubule systems have been significantly altered. This experimental system provides a test bed for the development of both fine- and coarse-grained models of complex motile processes, but such models need to be adequately informed by experiment. Using criteria based on Fourier transform analysis, we detect spontaneous oscillations in spreading cells. However, their amplitude and tendency to operate at a single frequency are greatly enhanced by microtubule depolymerization. Knockdown of RhoA and addition of various inhibitors of the downstream effector of RhoA, Rho kinase, block oscillatory behavior. Inhibiting calcium fluxes from endoplasmic reticulum stores and from the extracellular medium does not significantly affect the ability of cells to oscillate, indicating that calcium plays a subordinate regulatory role compared to Rho. We characterized the dynamic structure of the oscillating cell by light, fluorescence, and electron microscopy, showing how oscillating cells are dynamically polarized in terms of their overall morphology, f-actin and phosphorylated myosin light chain distribution, and nuclear position and shape. Not only will these studies guide future experiments, they will also provide a framework for the development of refined mathematical models of the oscillatory process.


Asunto(s)
Calcio/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Proteína de Unión al GTP rhoA/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Movimiento Celular , Núcleo Celular/metabolismo , Polaridad Celular , Forma de la Célula , Activación Enzimática , Espacio Extracelular/metabolismo , Ratones , Microtúbulos/metabolismo , Transporte de Proteínas
16.
Cytoskeleton (Hoboken) ; 67(8): 519-34, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20623665

RESUMEN

To gain insights on cellular mechanisms regulating actin polymerization, we used the Virtual Cell to model fluorescence recovery after photobleaching (FRAP) and chromophore-assisted laser inactivation (CALI) experiments on EGFP-capping protein (EGFP-CP). Modeling the FRAP kinetics demonstrated that the in vivo rate for the dissociation of CP from actin filaments is much faster (approximately 0.1 s(-1)) than that measured in vitro (0.01-0.0004 s(-1)). The CALI simulation revealed that in order to induce sustainable changes in cell morphology after CP inactivation, the cells should exhibit anticapping ability. We included the VASP protein as the anticapping agent in the modeling scheme. The model predicts that VASP affinity for barbed ends has a cooperative dependence on the concentration of VASP-barbed end complexes. This dependence produces a positive feedback that stabilizes the complexes and allows sustained growth at clustered filament tips. We analyzed the range of laser intensities that are sufficient to induce changes in cell morphology. This analysis demonstrates that FRAP experiments with EGFP-CP can be performed safely without changes in cell morphology, because, the intensity of the photobleaching beam is not high enough to produce the critical concentration of free barbed ends that will induce filament growth before diffusional replacement of EGFP-CP occurs.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Actinas/biosíntesis , Citoesqueleto/metabolismo , Cinética , Rayos Láser , Unión Proteica
17.
PLoS One ; 4(4): e5378, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19401774

RESUMEN

Previously, we introduced causal mapping (CMAP) as an easy to use systems biology tool for studying the behavior of biological processes that occur at the cellular and molecular level. CMAP is a coarse-grained graphical modeling approach in which the system of interest is modeled as an interaction map between functional elements of the system, in a manner similar to portrayals of signaling pathways commonly used by molecular cell biologists. CMAP describes details of the interactions while maintaining the simplicity of other qualitative methods (e.g., Boolean networks).In this paper, we use the CMAP methodology as a tool for generating hypotheses about the mechanisms that regulate molecular and cellular systems. Furthermore, our approach allows competing hypotheses to be ranked according to a fitness index and suggests experimental tests to distinguish competing high fitness hypotheses. To motivate the CMAP as a hypotheses generating tool and demonstrate the methodology, we first apply this protocol to a simple test-case of a three-element signaling module. Our methods are next applied to the more complex phenomenon of cortical oscillations observed in spreading cells. This analysis produces two high fitness hypotheses for the mechanism that underlies this dynamic behavior and suggests experiments to distinguish the hypotheses. The method can be widely applied to other cellular systems to generate and compare alternative hypotheses based on experimentally observed data and using computer simulations.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Biología de Sistemas , Algoritmos , Señalización del Calcio , Método de Montecarlo , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 106(6): 1790-5, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19174517

RESUMEN

Two new crystal structures of Bacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) afford evidence that a closed interdomain hinge angle requires a covalent bond between AMP and an occupant of either pyrophosphate or tryptophan subsite. They also are within experimental error of a cluster of structures observed in a nonequilibrium molecular dynamics simulation showing partial active-site assembly. Further, the highest energy structure in a minimum action pathway computed by using elastic network models for Open and Pretransition state (PreTS) conformations for the fully liganded TrpRS monomer is intermediate between that simulated structure and a partially disassembled structure from a nonequilibrium molecular dynamics trajectory for the unliganded PreTS. These mutual consistencies provide unexpected validation of inferences drawn from molecular simulations.


Asunto(s)
Geobacillus stearothermophilus/enzimología , Triptófano-ARNt Ligasa/química , Adenosina Monofosfato , Sitios de Unión , Cristalografía por Rayos X , Difosfatos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Triptófano
19.
Biophys J ; 94(12): 4605-20, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18326667

RESUMEN

Actomyosin-based cortical contractility is a common feature of eukaryotic cells and is involved in cell motility, cell division, and apoptosis. In nonmuscle cells, oscillations in contractility are induced by microtubule depolymerization during cell spreading. We developed an ordinary differential equation model to describe this behavior. The computational model includes 36 parameters. The values for all but two of the model parameters were taken from experimental measurements found in the literature. Using these values, we demonstrate that the model generates oscillatory behavior consistent with current experimental observations. The rhythmic behavior occurs because of the antagonistic effects of calcium-induced contractility and stretch-activated calcium channels. The model makes several experimentally testable predictions: 1), buffering intracellular calcium increases the period and decreases the amplitude of cortical oscillations; 2), increasing the number or activity of stretch activated channels leads to an increase in period and amplitude of cortical oscillations; 3), inhibiting Ca(2+) pump activity increases the period and amplitude of oscillations; and 4), a threshold exists for the calcium concentration below which oscillations cease.


Asunto(s)
Relojes Biológicos/fisiología , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/fisiología , Células 3T3 , Animales , Bioquímica/métodos , Simulación por Computador , Elasticidad , Ratones , Estrés Mecánico
20.
Structure ; 15(10): 1272-84, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17937916

RESUMEN

B. stearothermophilus tryptophanyl-tRNA synthetase catalysis proceeds via high-energy protein conformations. Unliganded MD trajectories of the pretransition-state complex with Mg(2+)ATP and the (post) transition-state analog complex with adenosine tetraphosphate relax rapidly in opposite directions, the former regressing, the latter progressing along the structural reaction coordinate. The two crystal structures (rmsd 0.7 A) therefore lie on opposite sides of a conformational free-energy maximum as the chemical transition state forms. SNAPP analysis illustrates the complexity of the associated long-range conformational coupling. Switching interactions in four nonpolar core regions are locally isoenergetic throughout the transition. Different configurations, however, propagate their effects to unfavorable, longer-range interactions at the molecular surface. Designed mutation shows that switching interactions enhance the rate, perhaps by destabilizing the ground state immediately before the transition state and limiting nonproductive diffusion before and after the chemical transition state, thereby reducing the activation entropy. This paradigm may apply broadly to energy-transducing enzymes.


Asunto(s)
Geobacillus stearothermophilus/enzimología , Triptófano-ARNt Ligasa/química , Triptófano/metabolismo , Catálisis , Cristalografía por Rayos X , Cinética , Ligandos , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Termodinámica , Triptófano/química , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...