Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Bioanalysis ; 16(7): 77-119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389403

RESUMEN

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with these NEW Regulations" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1A (Mass Spectrometry Assays and Regulated Bioanalysis/BMV), P1B (Regulatory Inputs) and Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) are published in volume 16 of Bioanalysis, issues 8 and 9 (2024), respectively.


Asunto(s)
Bioensayo , Tecnología , Bioensayo/métodos , Biomarcadores/análisis , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunoterapia Activa
2.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37526071

RESUMEN

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Asunto(s)
Medicamentos bajo Prescripción , Tecnología , Bioensayo/métodos , Biomarcadores/análisis , Tratamiento Basado en Trasplante de Células y Tejidos
3.
Bioanalysis ; 15(15): 861-903, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37584363

RESUMEN

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.


Asunto(s)
Bioensayo , Informe de Investigación , Citometría de Flujo/métodos , Ligandos , Biomarcadores/análisis , Bioensayo/métodos
4.
Bioanalysis ; 15(16): 955-1016, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37650500

RESUMEN

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.


Asunto(s)
Cromatografía , Vacunas , Biomarcadores , Tratamiento Basado en Trasplante de Células y Tejidos , Espectrometría de Masas , Oligonucleótidos , Tecnología
5.
Bioanalysis ; 14(12): 853-863, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35703321

RESUMEN

Gene therapy, cell therapy and vaccine research have led to an increased use of qPCR/ddPCR in bioanalytical laboratories. CROs are progressively undertaking the development and validation of qPCR and ddPCR assays. Currently, however, there is limited regulatory guidance for the use of qPCR and a complete lack of any regulatory guidelines for the use of the newer ddPCR to support regulated bioanalysis. Hence, the Global CRO Council in Bioanalysis (GCC) has issued this White Paper to provide; 1) a consensus on the different validation parameters required to support qPCR/ddPCR assays; 2) a harmonized approach to their validation and 3) a consistent development of standard operating procedures (SOPs) for all the bioanalytical laboratories using these techniques.


Asunto(s)
Bioensayo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
Bioanalysis ; 14(10): 627-692, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35578974

RESUMEN

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.


Asunto(s)
Citometría de Flujo , Biomarcadores/análisis , Citometría de Flujo/métodos , Humanos , Indicadores y Reactivos , Biopsia Líquida , Espectrometría de Masas
7.
Bioanalysis ; 14(11): 737-793, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35578991

RESUMEN

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) are published in volume 14 of Bioanalysis, issues 9 and 10 (2022), respectively.


Asunto(s)
Receptores Quiméricos de Antígenos , Vacunas , Biomarcadores/análisis , Sistemas CRISPR-Cas , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Activa , Reacción en Cadena de la Polimerasa
9.
Bioanalysis ; 13(8): 609-619, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33847160

RESUMEN

The 13th Global CRO Council (GCC) closed forum for bioanalysis was held in New Orleans, LA, USA on 5 April 2019. This GCC meeting was organized to discuss the contents of the 2019 ICH M10 Bioanalytical Method Validation Draft Guideline published in February 2019 and consolidate the feedback of the GCC members. While ICH M10 will cover requirements for reference standards, one of the biggest challenges facing the CRO community is the lack of consistency and completeness of Certificates of Analysis for reference standards used in regulated bioanalysis. Similar challenges exist with critical reagents (e.g., capture and detection antibodies) used for assays supporting biologics. The recommendations provided in this publication are the minimum requirements for the content that GCC members believe should be included in Certificates of Analysis for reference standards obtained from commercial vendors, sponsors and compendial suppliers, for use in regulated bioanalytical studies. In addition, recommendations for internal standards, metabolites and critical reagents are discussed.


Asunto(s)
Anticuerpos/análisis , Bioensayo/normas , Humanos , Estándares de Referencia
10.
Bioanalysis ; 13(6): 415-463, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33533276

RESUMEN

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Citometría de Flujo , Terapia Genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Vacunas/análisis , Humanos , Control de Calidad , Receptores Quiméricos de Antígenos/análisis , Estados Unidos , United States Food and Drug Administration
11.
Methods Mol Biol ; 2224: 113-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606210

RESUMEN

Diabetes mellitus (DM) is caused either due to insulin deficiency (T1DM) or insulin resistance (T2DM). DM increases the risk of heart failure by diabetic cardiomyopathy (DMCM), a cardiac muscle disorder that leads to a progressive decline in diastolic function, and ultimately systolic dysfunction. Mouse models of T1DM and T2DM exhibit clinical signs of DMCM. Growing evidence implicates microRNA (miRNA), an endogenous, non-coding, regulatory RNA, in the pathogenesis and signaling of DMCM. Therefore, inhibiting deleterious miRNAs and mimicking cardioprotective miRNAs could provide a potential therapeutic intervention for DMCM. miRNA-133a (miR-133a) is a highly abundant miRNA in the human heart. It is a cardioprotective miRNA, which is downregulated in the DM heart. It has anti-hypertrophic and anti-fibrotic effects. miR-133a mimic treatment after the onset of early DMCM can reverse histological and clinical signs of the disease in mice. We hypothesized that overexpression of cardiac-specific miR-133a in Ins2+/- Akita (T1DM) mice can prevent progression of DMCM. Here, we describe a method to create and validate cardiac-specific Ins2+/-/miR-133aTg mice to determine whether cardiac-specific miR-133a overexpression prevents development of DMCM. These strategies demonstrate the value of genetic modeling of human disease such as DMCM and evaluate the potential of miRNA as a therapeutic intervention.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Corazón/fisiopatología , Insulina/genética , MicroARNs/genética , Animales , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/patología
12.
Bioanalysis ; 13(5): 295-361, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33511867

RESUMEN

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 2A) BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation and (Part 2B) Regulatory Input. Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 4, and 6 (2021), respectively.


Asunto(s)
Bioensayo , Biotecnología , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Informe de Investigación , Biomarcadores/análisis , Humanos
14.
J Lab Physicians ; 12(1): 3-9, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32792787

RESUMEN

Background Bloodstream infections (BSIs) are one of the frequent nosocomial infections among hospitalized patients. To understand the local epidemiology and evolving antimicrobial drug resistance of blood-borne pathogens, we analyzed the distribution and antibiotic sensitivity profile of organisms causing BSI in our hospital-based study. Materials and Methods We reviewed retrospective data of laboratory-confirmed BSIs, from January 2013 to December 2018. Causative organisms and their antibiotic susceptibility profile of primary and secondary BSI reports were determined from BacT/Alert and Vitek systems findings (bioMérieux). A 6-year multidrug resistance indexing was done to document the resistance pattern of the commonly isolated organisms. Results A total of 1,340 (10.2%) BSIs were reported from 13,091 blood cultures. Organisms were frequently isolated from the younger population (≤20 years), especially from ages < 1 year (20.8% of total BSIs). Majority of pathogens were bacterial (97.1%) whereas 2.9% were fungal in origin. Monomicrobial growth was recorded in over 98% of BSIs. Gram-positive and gram-negative bacteria isolated were 518 (39.8%) and 783 (60.2%), respectively. Commonly isolated organisms were coagulase-negative Staphylococci (29.4%), Escherichia coli (19.8%), Klebsiella species (13.5%), Salmonella species (9.4%), and Staphylococcus aureus (7.5%). Multidrug-resistance index was observed highest in Acinetobacter species followed by Pseudomonas aeruginosa and S. aureus . Conclusion Overall, there has been a gradual decline in the reporting of BSI. However, infections by gram-negative bacilli and multidrug-resistant organisms remain persistently high. Ages < 20 years were the vulnerable group, with infants < 1 year contributing to the maximum number of BSI cases caused by both bacteria and fungi. Therefore, additional methods are required to study the origin and causation of these infections, particularly among vulnerable patients.

15.
Bioanalysis ; 12(12): 817-821, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32618474

RESUMEN

Over the past 10 years, Bioanalysis and Bioanalysis Zone have been proud to host the Bioanalysis Rising Star Award (formerly the New Investigator Award), to recognize and showcase the most promising early-career scientists in our community. The time has now come for you to select your winner for the Bioanalysis Rising Star Award 2020. We are delighted to present our judges' selection of finalists (in alphabetical order): Ashley Ross, University of Cincinnati (OH, USA) Chris Williams, QPS (Groningen, The Netherlands) Danielle Moncrieffe, King's College London (UK) Omar Barnaby, Amgen (CA, USA) Sooraj Baijnath, University of KwaZulu-Natal (South Africa) Sumit Kar, Celerion (NE, USA).


Asunto(s)
Distinciones y Premios , Bioensayo/historia , Historia del Siglo XXI , Humanos
17.
Cell Death Dis ; 11(3): 186, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170070

RESUMEN

Providing a conducive microenvironment is critical to increase survival of transplanted stem cells in regenerative therapy. Hyperglycemia promotes stem cell death impairing cardiac regeneration in the diabetic heart. Understanding the molecular mechanisms of high glucose-induced stem cell death is important for improving cardiac regeneration in diabetic patients. Matrix metalloproteinase-9 (MMP9), a collagenase, is upregulated in the diabetic heart, and ablation of MMP9 decreases infarct size in the non-diabetic myocardial infarction heart. In the present study, we aim to investigate whether MMP9 is a mediator of hyperglycemia-induced cell death in human cardiac stem cells (hCSCs) in vitro. We created MMP9-/- hCSCs to test the hypothesis that MMP9 mediates hyperglycemia-induced oxidative stress and cell death via apoptosis and pyroptosis in hCSCs, which is attenuated by the lack of MMP9. We found that hyperglycemia induced oxidative stress and increased cell death by promoting pyroptosis and apoptosis in hCSCs, which was prevented in MMP9-/- hCSCs. These findings revealed a novel intracellular role of MMP9 in mediating stem cell death and provide a platform to assess whether MMP9 inhibition could improve hCSCs survival in stem cell therapy at least in acute hyperglycemic microenvironment.


Asunto(s)
Apoptosis/genética , Hiperglucemia/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Piroptosis/genética , Células Madre/metabolismo , Animales , Humanos , Miocitos Cardíacos/metabolismo , Transducción de Señal , Transfección
18.
Antioxidants (Basel) ; 8(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835893

RESUMEN

Obesity increases the risk of developing diabetes and subsequently, diabetic cardiomyopathy (DMCM). Reduced cardioprotective antioxidant hydrogen sulfide (H2S) and increased inflammatory cell death via pyroptosis contribute to adverse cardiac remodeling and DMCM. Although exercise training (EX) has cardioprotective effects, it is unclear whether EX mitigates obesity-induced DMCM by increasing H2S biosynthesis and mitigating pyroptosis in the heart. C57BL6 mice were fed a high-fat diet (HFD) while undergoing treadmill EX for 20 weeks. HFD mice developed obesity, hyperglycemia, and insulin resistance, which were reduced by EX. Left ventricle pressure-volume measurement revealed that obese mice developed reduced diastolic function with preserved ejection fraction, which was improved by EX. Cardiac dysfunction was accompanied by increased cardiac pyroptosis signaling, structural remodeling, and metabolic remodeling, indicated by accumulation of lipid droplets in the heart. Notably, EX increased cardiac H2S concentration and expression of H2S biosynthesis enzymes. HFD-induced obesity led to features of type 2 diabetes (T2DM), and subsequently DMCM. EX during the HFD regimen prevented the development of DMCM, possibly by promoting H2S-mediated cardioprotection and alleviating pyroptosis. This is the first report of EX modulating H2S and pyroptotic signaling in the heart.

19.
Bioanalysis ; 11(20): 1837-1844, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31657227

RESUMEN

Aim: Determining the stability of biomarkers continues to present challenges. Disease states, complex matrices and differences between recombinant and endogenous analytes require new approaches to maintain stability and measure it. In this report, we determine stability for two assays using trending and statistical analysis. Methodology & results: Monitoring trends helps identify out of specification measurements and determine whether concerns are due to the stability of the analyte. We also describe challenges presented when measuring arginase activity in human sputum, a complex matrix, for respiratory diseases. We controlled preanalytical protease activity and collection heterogeneity and monitored incurred sample stability to improve stability of arginine. Conclusion: These new approaches to achieving and determining biomarker stability may provide solutions for increasingly complex biomarker measurements.


Asunto(s)
Biomarcadores/análisis , Técnicas de Química Analítica/métodos , Arginasa/química , Arginasa/metabolismo , Biomarcadores/química , Humanos , Subunidad alfa1 del Receptor de Interleucina-13/análisis , Subunidad alfa1 del Receptor de Interleucina-13/química , Estabilidad Proteica , Control de Calidad , Esputo/enzimología , Estadística como Asunto , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/química
20.
Am J Physiol Heart Circ Physiol ; 317(5): H891-H922, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31418596

RESUMEN

Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.


Asunto(s)
Investigación Biomédica/normas , Enfermedades Cardiovasculares/patología , Muerte Celular , Guías como Asunto/normas , Miocitos Cardíacos/patología , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocitos Cardíacos/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...