Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067494

RESUMEN

Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.


Asunto(s)
Antagonistas de Narcóticos , Estreñimiento Inducido por Opioides , Humanos , Antagonistas de Narcóticos/uso terapéutico , Analgésicos Opioides/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Estreñimiento Inducido por Opioides/tratamiento farmacológico , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Receptores Opioides/metabolismo
2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37631030

RESUMEN

The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT) measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again, PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallodynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or duloxetine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium and calcium channels, respectively. The dual blockade effect of the combination might explain its advantageous acute analgesic effect in the present work.

3.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076962

RESUMEN

Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.


Asunto(s)
Neuralgia , Tolperisona , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ácido Glutámico , Neuralgia/tratamiento farmacológico , Pregabalina/farmacología , Pregabalina/uso terapéutico , Ratas , Tolperisona/farmacología , Tolperisona/uso terapéutico
4.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804568

RESUMEN

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Glicina/líquido cefalorraquídeo , Hiperalgesia/prevención & control , Neuralgia/tratamiento farmacológico , Sarcosina/análogos & derivados , Animales , Hiperalgesia/metabolismo , Hiperalgesia/patología , Masculino , Actividad Motora , Neuralgia/metabolismo , Neuralgia/patología , Ratas , Ratas Wistar , Sarcosina/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología
5.
Brain Res Bull ; 147: 78-85, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30738866

RESUMEN

Dipeptidyl-peptidase 4 (DPP4) enzyme is involved in the degradation of many biologically active peptides including opioids. Its role in pain transmission is poorly elucidated. Recently we reported on the spinal antihyperalgesic effects of DPP4 inhibitors, Ile-Pro-Ile (Diprotin A) and vildagliptin in carrageenan-evoked acute inflammatory pain in rats. The present study investigated the effects of intrathecal (it.) diprotin A and vildagliptin in Complete Freund's Adjuvant- (CFA) and formalin induced pain in rats. The former assay can model the subchronic inflammatory pain condition and the later one reflects both acute tonic and inflammatory pain conditions. The involvement of opioid receptor (OR) subtypes, Y1-, and GLP1 receptors were also investigated. In CFA pain model it. diprotin A or vildagliptin dose-dependently inhibits hyperalgesia in ipsilateral while has no effect in contralateral paws. The peak effect was achieved 30 min following drug administration which was used for further analysis. Both compounds showed naltrexone reversible antihyperalgesia. Co-administration of OR-subtype-selective antagonists with diprotin A and vildagliptin revealed involvement of µ and δ > µ opioid receptors, respectively. Co-administered Y1 but not GLP1 receptor antagonists reversed the antihyperalgesic action of both DPP4 inhibitors. In touch-hypersensitivity both compounds were ineffective. In formalin test only diprotin A showed µ and δ OR-mediated antinociception and only in the 2nd phase. This effect was Y1 or GLP-1 receptor antagonist insensitive. In conclusion, diprotin A and vildagliptin display antinociception of different mechanisms of action in subchronic inflammatory pain. Furthermore, the spinal pain relay points of inflammatory pain of acute or subchronic conditions were more effectively affected by diprotin A than vildagliptin which needs future elucidation.


Asunto(s)
Oligopéptidos/farmacología , Dolor/tratamiento farmacológico , Vildagliptina/farmacología , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hiperalgesia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Antagonistas de Narcóticos/farmacología , Oligopéptidos/metabolismo , Dolor/fisiopatología , Dimensión del Dolor , Ratas , Ratas Wistar , Receptores Opioides/metabolismo , Receptores Opioides mu , Vildagliptina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...