Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(5): 6485-6494, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266382

RESUMEN

Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 µm lateral resolution. We make fully printed 1000 × 5000 × 12 µm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits.

2.
ACS Appl Mater Interfaces ; 15(48): 56575-56586, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37985370

RESUMEN

The ever-increasing demand for self-powered systems such as glucose biosensors and mixed reality devices has sparked significant interest in triboelectric generators, which hold large potential as renewable energy solutions. Our study explores new methods for integrating energy-harvesting capabilities into smart textiles by developing strong and efficient yarns that can convert mechanical energy into electrical energy through a triboelectric effect. Specifically, we focused on Nylon-11 (PA11), a material known for its crystalline structure well-suited for generating a powerful triboelectric response. To achieve this, we created triboelectric yarns by electrospinning PA11 fibers onto conductive carbon yarns, enabling energy-harvesting applications. Extensive testing demonstrated that these yarns possess exceptional durability, surpassing real-life usage requirements while experiencing minimal degradation. Additionally, we developed a prototype haptic device by interweaving tribopositive PA11 and tribonegative poly(vinylidene fluoride) (PVDF) triboelectric yarns. Our research has successfully yielded durable and efficient yarns with strong energy-harvesting capabilities, opening up possibilities for integrating smart textiles into practical scenarios. These technologies are promising steps to achieve greener and more reliable self-powered systems.

4.
ACS Appl Mater Interfaces ; 15(10): 13097-13107, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854123

RESUMEN

We present a novel method to significantly enhance the thermoelectric performance of ceramics in the model system SrTi0.85Nb0.15O3 through the use of the precursor ammonium tetrathiomolybdate (0.5-2% w/w additions). After sintering the precursor-infused green body at 1700 K for 24 h in 5% H2/Ar, single-crystal-like electron transport behavior developed with electrical conductivity reaching ∼3000 S/cm at ∼300 K, almost a magnitude higher than that in the control sample. During processing, the precursor transformed into MoS2, then into MoOx, and finally into Mo particles. This limited grain growth promoted secondary phase generation but importantly helped to reduce the grain boundary barriers. Samples prepared with additions of the precursor exhibited vastly increased electrical conductivity, without significant impact on Seebeck coefficients giving rise to high power factor values of 1760 µW/mK2 at ∼300 K and a maximum thermoelectric figure-of-merit zT of 0.24 at 823 K. This processing strategy provides a simple method to achieve high charge mobility in polycrystalline titanate and related materials and with the potential to create "phonon-glass-electron-crystal" oxide thermoelectric materials.

5.
Nat Mater ; 21(7): 811-818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256790

RESUMEN

The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles. We printed libraries of micropillar array electrodes varying in height and submicrometre surface features, and studied the energy/electron transfer processes across the bio-electrode interfaces. When wired to the cyanobacterium Synechocystis sp. PCC 6803, micropillar array electrodes with microbranches exhibited favourable biocatalyst loading, light utilization and electron flux output, ultimately almost doubling the photocurrent of state-of-the-art porous structures of the same height. When the micropillars' heights were increased to 600 µm, milestone mediated photocurrent densities of 245 µA cm-2 (the closest thus far to theoretical predictions) and external quantum efficiencies of up to 29% could be reached. This study demonstrates how bio-energy from photosynthesis could be more efficiently harnessed in the future and provide new tools for three-dimensional electrode design.


Asunto(s)
Fotosíntesis , Synechocystis , Electricidad , Electrodos , Impresión Tridimensional
6.
Cell Rep Phys Sci ; 2(4): 100386, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33928263

RESUMEN

Force sensors that are thin, low-cost, flexible, and compatible with commercial microelectronic chips are of great interest for use in biomedical sensing, precision surgery, and robotics. By leveraging a combination of microfluidics and capacitive sensing, we develop a thin, flexible force sensor that is conformable and robust. The sensor consists of a partially filled microfluidic channel made from a deformable material, with the channel overlaying a series of interdigitated electrodes coated with a thin, insulating polymer layer. When a force is applied to the microfluidic channel reservoir, the fluid is displaced along the channel over the electrodes, thus inducing a capacitance change proportional to the applied force. The microfluidic molds themselves are made of low-cost sacrificial materials deposited via aerosol-jet printing, which is also used to print the electrode layer. We envisage a large range of industrial and biomedical applications for this force sensor.

7.
ACS Nano ; 15(5): 8848-8859, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33900735

RESUMEN

Access to clean water is a global challenge, and fog collectors are a promising solution. Polycarbonate (PC) fibers have been used in fog collectors but with limited efficiency. In this study, we show that controlling voltage polarity and humidity during the electrospinning of PC fibers improves their surface properties for water collection capability. We experimentally measured the effect of both the surface morphology and the chemistry of PC fiber on their surface potential and mechanical properties in relation to the water collection efficiency from fog. PC fibers produced at high humidity and with negative voltage polarity show a superior water collection rate combined with the highest tensile strength. We proved that electric potential on surface and morphology are crucial, as often designed by nature, for enhancing the water collection capabilities via the single-step production of fibers without any postprocessing needs.

8.
ACS Appl Mater Interfaces ; 13(14): 16876-16886, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33783199

RESUMEN

Triboelectric generators are excellent candidates for smart textiles applications due to their ability to convert mechanical energy into electrical energy. Such devices can be manufactured into yarns by coating a conductive core with a triboelectric material, but current triboelectric yarns lack the durability and washing resistance required for textile-based applications. In this work, we develop a unique triboelectric yarn comprising a conducting carbon nanotube (CNT) yarn electrode coated with poly(vinylidene fluoride) (PVDF) fibers deposited by a customized electrospinning process. We show that the electrospun PVDF fibers adhere extremely well to the CNT core, producing a uniform and stable triboelectric coating. The PVDF-CNT coaxial yarn exhibits remarkable triboelectric energy harvesting during fatigue testing with a 33% power output improvement and a peak power density of 20.7 µW cm-2 after 200 000 fatigue cycles. This is potentially due to an increase in the active surface area of the PVDF fiber coating upon repeated contact. Furthermore, our triboelectric yarn meets standard textile industry benchmarks for both abrasion and washing by retaining functionality over 1200 rubbing cycles and 10 washing cycles. We demonstrate the energy harvesting and motion sensing capabilities of our triboelectric yarn in prototype textile-based applications, thereby highlighting its applicability to smart textiles.

9.
Adv Sci (Weinh) ; 8(2): 2002419, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511008

RESUMEN

Plasmonic metafilms have been widely utilized to generate vivid colors, but making them both active and flexible simultaneously remains a great challenge. Here flexible active plasmonic metafilms constructed by printing electrochromic nanoparticles onto ultrathin metal films (<15 nm) are presented, offering low-power electricallydriven color switching. In conjunction with commercially available printing techniques, such flexible devices can be patterned using lithography-free approaches, opening up potential for fullyprinted electrochromic devices. Directional optical effects and dynamics show perceived upward and downward colorations can differ, arising from the dissimilar plasmonic mode excitation between nanoparticles and ultrathin metal films.

10.
ACS Appl Mater Interfaces ; 13(3): 4117-4125, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428400

RESUMEN

Micro-solid oxide fuel cells based on thin films have strong potential for use in portable power devices. However, devices based on silicon substrates typically involve thin-film metallic electrodes which are unstable at high temperatures. Devices based on bulk metal substrates overcome these limitations, though performance is hindered by the challenge of growing state-of-the-art epitaxial materials on metals. Here, we demonstrate for the first time the growth of epitaxial cathode materials on metal substrates (stainless steel) commercially supplied with epitaxial electrolyte layers (1.5 µm (Y2O3)0.15(ZrO2)0.85 (YSZ) + 50 nm CeO2). We create epitaxial mesoporous cathodes of (La0.60Sr0.40)0.95Co0.20Fe0.80O3 (LSCF) on the substrate by growing LSCF/MgO vertically aligned nanocomposite films by pulsed laser deposition, followed by selectively etching out the MgO. To enable valid comparison with the literature, the cathodes are also grown on single-crystal substrates, confirming state-of-the-art performance with an area specific resistance of 100 Ω cm2 at 500 °C and activation energy down to 0.97 eV. The work marks an important step toward the commercialization of high-performance micro-solid oxide fuel cells for portable power applications.

11.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007906

RESUMEN

Biosensors are powerful analytical tools for biology and biomedicine, with applications ranging from drug discovery to medical diagnostics, food safety, and agricultural and environmental monitoring. Typically, biological recognition receptors, such as enzymes, antibodies, and nucleic acids, are immobilized on a surface, and used to interact with one or more specific analytes to produce a physical or chemical change, which can be captured and converted to an optical or electrical signal by a transducer. However, many existing biosensing methods rely on chemical, electrochemical and optical methods of identification and detection of specific targets, and are often: complex, expensive, time consuming, suffer from a lack of portability, or may require centralised testing by qualified personnel. Given the general dependence of most optical and electrochemical techniques on labelling molecules, this review will instead focus on mechanical and electrical detection techniques that can provide information on a broad range of species without the requirement of labelling. These techniques are often able to provide data in real time, with good temporal sensitivity. This review will cover the advances in the development of mechanical and electrical biosensors, highlighting the challenges and opportunities therein.


Asunto(s)
Técnicas Biosensibles , Electricidad
12.
Nanotechnology ; 31(40): 404003, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32521513

RESUMEN

Studying nanomaterial piezoelectricity and triboelectricity is attractive for energy and sensing applications. However, quantitative characterisation of electromechanical effects in nanomaterials is challenging due to practical limitations and possible combination of effects, resulting in contradicting reports at times. When it comes to piezoelectricity at the nanoscale, piezoresponse force microscopy (PFM) is the default characterisation tool. In PFM the converse piezoelectric effect is measured - the conversion from electrical signal to mechanical response. However, there is an underlying desire to measure the direct piezoelectric effect - conversion of mechanical deformation to an electrical signal. This corresponds to energy harvesting and sensing. Here we present time-resolved open-circuit conductive atomic force microscopy (cAFM) as a new methodology to carry out direct electromechanical characterisation. We show, both theoretically and experimentally, that the standard short-circuit cAFM mode is inadequate for piezoelectric characterisation, and that resulting measurements are governed by competing mechanisms. We apply the new methodology to nanowires of GaAs, an important semiconductor, with relatively low piezoelectric coefficients. The results suggest that time-resolved operation distinguishes between triboelectric and piezoelectric signals, and that by measuring the open-circuit voltage rather than short-circuit current, the new methodology allows quantitative characterisation of the vertical piezoelectric coefficient. The result for GaAs nanowires, ∼ 1-3 pm V-1, is in good agreement with existing knowledge and theory. This method represents a significant advance in understanding the coexistence of different electromechanical effects, and in quantitative piezoelectric nanoscale characterisation. The easy implementation will enable better understanding of electromechanics at the nanoscale.

13.
Sci Adv ; 6(24): eaay5065, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32577503

RESUMEN

Dipole alignment in ferroelectric polymers is routinely exploited for applications in charge-based applications. Here, we present the first experimental realization of ideally ordered dipole alignment in α-phase nylon-11 nanowires. This is an unprecedented discovery as dipole alignment is typically only ever achieved in ferroelectric polymers using an applied electric field, whereas here, we achieve dipole alignment in as-fabricated nanowires of 'non-ferroelectric' α-phase nylon-11, an overlooked polymorph of nylon proposed 30 years ago but never practically realized. We show that the strong hydrogen bonding in α-phase nylon-11 serves to enhance the molecular ordering, resulting in exceptional intensity and thermal stability of surface potential. This discovery has profound implications for the field of triboelectric energy harvesting, as the presence of an enhanced surface potential leads to higher mechanical energy harvesting performance. Our approach therefore paves the way towards achieving robust, high-performance mechanical energy harvesters based on this unusual ordered phase of nylon-11.

14.
ACS Appl Bio Mater ; 3(4): 2140-2149, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32337501

RESUMEN

It has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric nanomaterials, in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions. The choice of piezoelectric material is crucial to ensure compatibility with cells under investigation, both in terms of stiffness and biocompatibility. Here, we show that poly-l-lactic acid nanotubes, grown using a melt-press template wetting technique, can provide a "soft" piezoelectric interface onto which human dermal fibroblasts readily attach. Interestingly, by controlling the crystallinity of the nanotubes, the level of attachment can be regulated. In this work, we provide detailed nanoscale characterization of these nanotubes to show how differences in stiffness, surface potential, and piezoelectric activity of these nanotubes result in differences in cellular behavior.

15.
ACS Appl Mater Interfaces ; 12(11): 13575-13583, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32090543

RESUMEN

Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the ß-phase and piezoelectric properties of PVDF fibers. We shed new light on ß-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 µW·cm-2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with ß-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications.

16.
Appl Mater Today ; 19: 100618, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33521242

RESUMEN

Microfluidics has emerged as a powerful analytical tool for biology and biomedical research, with uses ranging from single-cell phenotyping to drug discovery and medical diagnostics, and only small sample volumes required for testing. The ability to rapidly prototype new designs is hugely beneficial in a research environment, but the high cost, slow turnaround, and wasteful nature of commonly used fabrication techniques, particularly for complex multi-layer geometries, severely impede the development process. In addition, microfluidic channels in most devices currently play a passive role and are typically used to direct flows. The ability to "functionalize" the channels with different materials in precise spatial locations would be a major advantage for a range of applications. This would involve incorporating functional materials directly within the channels that can partake in, guide or facilitate reactions in precisely controlled microenvironments. Here we demonstrate the use of Aerosol Jet Printing (AJP) to rapidly produce bespoke molds for microfluidic devices with a range of different geometries and precise "in-channel" functionalization. We show that such an advanced microscale additive manufacturing method can be used to rapidly design cost-efficient and customized microfluidic devices, with the ability to add functional coatings at specific locations within the microfluidic channels. We demonstrate the functionalization capabilities of our technique by specifically coating a section of a microfluidic channel with polyvinyl alcohol to render it hydrophilic. This versatile microfluidic device prototyping technique will be a powerful aid for biological and bio-medical research in both academic and industrial contexts.

17.
Nanomaterials (Basel) ; 9(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527424

RESUMEN

Controlling nanomaterial shape beyond its basic dimensionality is a concurrent challenge tackled by several growth and processing avenues. One of these is strain engineering of nanowires, implemented through the growth of asymmetrical heterostructures. Here, we report metal-organic molecular beam epitaxy of bent InP/InAs core/shell nanowires brought by precursor flow directionality in the growth chamber. We observe the increase of bending with decreased core diameter. We further analyze the composition of a single nanowire and show through supporting finite element simulations that strain accommodation following the lattice mismatch between InP and InAs dominates nanowire bending. The simulations show the interplay between material composition, shell thickness, and tapering in determining the bending. The simulation results are in good agreement with the experimental bending curvature, reproducing the radius of 4.3 µm (±10%), for the 2.3 µm long nanowire. The InP core of the bent heterostructure was found to be compressed at about 2%. This report provides evidence of shape control and strain engineering in nanostructures, specifically through the exchange of group-V materials in III-V nanowire growth.

18.
Nanoscale ; 11(32): 15120-15130, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31369017

RESUMEN

The piezoelectricity of collagen is purported to be linked to many biological processes including bone formation and wound healing. Although the piezoelectricity of tissue-derived collagen has been documented across the length scales, little work has been undertaken to characterise the local electromechanical properties of processed collagen, which is used as a base for tissue-engineering implants. In this work, three chemically distinct treatments used to form structurally and mechanically stable scaffolds-EDC-NHS, genipin and tissue transglutaminase-are investigated for their effect on collagen piezolectricity. Crosslinking with EDC-NHS is noted to produce a distinct self-assembly of the fibres into bundles roughly 300 nm in width regardless of the collagen origin. These fibre bundles also show a localised piezoelectric response, with enhanced vertical piezoelectricity of collagen. Such topographical features are not observed with the other two chemical treatments, although the shear piezoelectric response is significantly enhanced upon crosslinking. These observations are reconciled by a proposed effect of the crosslinking mechanisms on the molecular and nanostructure of collagen. These results highlight the ability to modify the electromechanical properties of collagen using chemical crosslinking methods.


Asunto(s)
Colágeno/química , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Iridoides/química , Iridoides/metabolismo , Microscopía de Fuerza Atómica , Nanoestructuras/química , Proteína Glutamina Gamma Glutamiltransferasa 2 , Succinimidas/química , Ingeniería de Tejidos , Transglutaminasas/química , Transglutaminasas/metabolismo
19.
Nanoscale ; 10(35): 16812-16821, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30160284

RESUMEN

Cellulose, a major constituent of our natural environment and a structured biodegradable biopolymer, has been shown to exhibit shear piezoelectricity with potential applications in energy harvesters, biomedical sensors, electro-active displays and actuators. In this regard, a high-aspect ratio nanofiber geometry is particularly attractive as flexing or bending will likely produce a larger piezoelectric response as compared to axial deformation in this material. Here we report self-assembled cellulose nanofibers (SA-CNFs) fabricated using a template-wetting process, whereby parent cellulose nanocrystals (CNCs) introduced into a nanoporous template assemble to form rod-like cellulose clusters, which then assemble into SA-CNFs. Annealed SA-CNFs were found to exhibit an anisotropic shear piezoelectric response as directly measured using non-destructive piezo-response force microscopy (ND-PFM). We interpret these results in light of the distinct hierarchical structure in our template-grown SA-CNFs as revealed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM).

20.
Energy Technol (Weinh) ; 6(5): 928-934, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29938161

RESUMEN

Nanowires of the ferroelectric co-polymer poly(vinylidenefluoride-co-triufloroethylene) [P(VDF-TrFE)] are fabricated from solution within nanoporous templates of both "hard" anodic aluminium oxide (AAO) and "soft" polyimide (PI) through a facile and scalable template-wetting process. The confined geometry afforded by the pores of the templates leads directly to highly crystalline P(VDF-TrFE) nanowires in a macroscopic "poled" state that precludes the need for external electrical poling procedure typically required for piezoelectric performance. The energy-harvesting performance of nanogenerators based on these template-grown nanowires are extensively studied and analyzed in combination with finite element modelling. Both experimental results and computational models probing the role of the templates in determining overall nanogenerator performance, including both materials and device efficiencies, are presented. It is found that although P(VDF-TrFE) nanowires grown in PI templates exhibit a lower material efficiency due to lower crystallinity as compared to nanowires grown in AAO templates, the overall device efficiency was higher for the PI-template-based nanogenerator because of the lower stiffness of the PI template as compared to the AAO template. This work provides a clear framework to assess the energy conversion efficiency of template-grown piezoelectric nanowires and paves the way towards optimization of template-based nanogenerator devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA