Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fundam Clin Pharmacol ; : e13030, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114894

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous ailment in both biological and clinical concepts. Numerous efforts have been devoted to discover natural compounds for combating cancer, which showed great potential in cancer management. Methylsulfonylmethane (MSM), an organosulfur dietary supplement, is utilized for improving various clinical conditions, particularly osteoarthritis. MSM can exert antitumor activity in a wide range of cancers. OBJECTIVES: The molecular mechanisms of action underlying antileukemic activity of MSM remain unclear. In this regard, we aimed to investigate the anticancer properties of MSM on human AML cell lines (U937 and HL60) with focus on underlying cell death mechanism. METHODS: Anticancer activity of the MSM was examined employing MTT assay, Annexin V-PE/7AAD staining, caspase3/7 activity test, and real-time qPCR. Both cell lines were treated with different concentrations (50-400 mM) of MSM for 24 h. Pretreatment of the cells with a caspase inhibitor (i.e., Z-VAD-fmk) was performed for the assessment of apoptosis induction. RESULTS: The results of MTT assay revealed that in both cell lines, the MSM markedly reduced cell viability in comparison to the control cells. Additionally, findings of Annexin V-7AAD staining revealed that MSM induced apoptosis and activated caspase 3/7 in both cell lines markedly. Real-time quantitative PCR results also supported the induction of apoptosis in AML cells. MSM altered the expression levels of various apoptotic genes (BAX, BAD, and BIM). CONCLUSION: Overall, our results indicated that MSM could induce apoptosis in AML cell lines in a dose-dependent manner, which therefore could be utilized as an antileukemic agent.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38916832

RESUMEN

Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.

3.
Toxicol In Vitro ; 95: 105754, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061604

RESUMEN

In this study, we aimed to analyze the effects of first and second-generation Bcr-Abl tyrosine kinase inhibitors, imatinib and nilotinib on LPS/IFN gamma activated RAW 264.7 macrophages. Our data revealed that imatinib was less effective on nitrite levels and more toxic on macrophages compared to nilotinib. Therefore, we further analysed the effect of nilotinib on various inflammatory markers including iNOS, COX-2, NFkB, IL-6, p-ERK, p-p38 and p-JNK in LPS/IFN gamma activated RAW264.7 macrophages. Spectrophotometric viability test and Griess assay,western blot, RT-PCR and luciferase reporter assays were used to analyze the biological activity of nilotinib. Our findings revealed that nilotinib decreases nitrite levels, iNOS mRNA, iNOS and p-p38 protein expressions significantly whereas induces IL-6 mRNA and p-JNK protein expressions at particular doses. We did not find significant effect of nilotinib on COX-2, p-ERK and nuclear p65 proteins and NFkB transcriptional activity. In addition, the binding mode of nilotinib to iNOS protein was predicted by molecular docking. According to the docking analyses, nilotinib exhibited hydrophobic interactions between MET349, ALA191, VAL346, PHE363, TYR367, MET368, CYS194, TRP366 residues at the binding pocket and the molecule as well as van der Waals interactions at specific residues. In conclusion, our results reveal that, in addition to its anticancer activity, nilotinib can exhibit immune modulatory effects on macrophages through its effects on iNOS, IL-6, p-p38 and p-JNK.


Asunto(s)
Lipopolisacáridos , Nitritos , Mesilato de Imatinib/farmacología , Lipopolisacáridos/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Nitritos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Macrófagos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Pirimidinas/toxicidad , ARN Mensajero/metabolismo
4.
Adv Med Sci ; 68(2): 238-248, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421850

RESUMEN

PURPOSE: Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the presence of BCR-ABL protein. Imatinib (IMA) is considered as the first line therapy in management of CML which particularly targets the BCR-ABL tyrosine kinase protein. However, emergence of resistance to IMA hinders its clinical efficiency. Hence, identifying novel targets for therapeutic approaches in CML treatment is of great importance. Here, we characterize a new subpopulation of highly adherent IMA-resistant CML cells that express stemness and adhesion markers compared to naive counterparts. MATERIALS AND METHODS: We performed several experimental assays including FISH, flow cytometry, and gene expression assays. Additionally, bioinformatics analysis was performed by normalized web-available microarray data (GSE120932) to revalidate and introduce probable biomarkers. Protein-protein interactions (PPI) network was analyzed by the STRING database employing Cytoscape v3.8.2. RESULTS: Our findings demonstrated that constant exposure to 5 â€‹µM IMA led to development of the adherent phenotype (K562R-adh). FISH and BCR-ABL expression analysis indicated that K562R-adh cells were derived from the original cells (K562R). In order to determine the role of various genes involved in epithelial-mesenchymal transition (EMT) and stem cell characterization, up/down-regulation of various genes including cancer stem cell (CSC), adhesion and cell surface markers and integrins were observed which was similar to the findings of the GSE120932 dataset. CONCLUSION: Treating CML patients with tyrosine kinase inhibitors (TKIs) as well as targeting adhesion molecules deemed to be effective approaches in prevention of IMA resistance emergence which in turn may provide promising effects in the clinical management of CML patients.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Células K562 , Apoptosis , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Fenotipo
5.
Leuk Res ; 102: 106523, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33607534

RESUMEN

INTRODUCTION: Chronic Myeloid Leukemia (CML) is a hematological disease which is characterized by the presence of BCR-ABL fusion protein. Imatinib (IMA), a tyrosine kinase inhibitor of BCR-ABL, is used as a frontline treatment.Although IMA aids in killing a majority of leukemia cells, it may not kill CML stem cells which are the primary roots of disease and therapy resistance. Recently, antimicrobial drugs have been gaining attention because of their selective targeting of cancer cells. Therefore, we now ask if combinational therapy of IMA with a targeted antimicrobial drug Azithromycin (AZT) can enhance the treatment efficiency in IMA resistant CML. METHODS: K562S (IMA sensitive) and K562R (IMA resistant) cells were treated with increasing concentrations of AZT to determine its effects on cell proliferation and apoptosis. Cell viability, apoptosis, caspase3/7 activity and P-glycoprotein (Pgp) function were investigated with spectrophotometric MTT assay and flow cytometric Annexin V staining, caspase 3/7 activity, and Rhodamine123 staining assays respectively. The expression levels of pro-apoptotic (BAX, BAD and BIM), anti- apoptotic (BCL-XL and BCL-2) and drug transporter (MDR-1 and MRP-1) genes were assessed with qRT-PCR. RESULTS: AZT treatment alone inhibited cell viability, induced apoptosis and enhanced caspase 3/7 activity in both K562S and high MDR-1 (Pgp) expressing K562R cells. Moreover, combination of AZT/IMA suppressed cell viability, induced apoptosis and caspase3/7 activity more effectively and significantly compared to K562R cells treated with only IMA or AZT. Furthermore, AZT and AZT/IMA combination decreased Pgp function in K562R cells in comparison with their controls. Based on qRT-PCR data, single AZT and combined AZT/IMA treatment also induced BAX/BCL-2 ratio significantly in both K562S and K562R cells. CONCLUSION: Single AZT and AZT/IMA combinational treatment can be proposed as a promising and effective treatment strategy for CML. One of the mechanisms underlying the potent anticancer effect of combined AZT/IMA could be its ability to inhibit Pgp function and increase intracellular accumulation of IMA which leads to the induction of apoptosis in K562R cells.


Asunto(s)
Antineoplásicos/farmacología , Azitromicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Mesilato de Imatinib/farmacología
6.
Turk J Pharm Sci ; 18(1): 75-79, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33634671

RESUMEN

OBJECTIVES: Probucol is a bisphenol antioxidant with antiinflammatory, antilipidemic and antidiabetic effect. Development and progression of cancer is closely related to chronic inflammation and oxidative stress. Agents that target these processes have been shown to modulate cancer cell proliferation. In this regard, the effect of probucol on proliferation of different cancer cell lines was investigated. MATERIALS AND METHODS: Different concentrations of probucol solutions were prepared and applied to the following cancer cell lines: K562S (imatinib sensitive) and K562R (imatinib resistant) chronic myeloid leukemia (CML) cells; U937 histiocytic lymphoma cells; HL60 acute myeloid leukemia cells; U266, H929, and RPMI8226 multiple myeloma cells; and L929 fibroblast cells. Cell viability was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS: Significant toxicity was not exhibited due to probucol treatment (0.1-10 µM) in K562S and K562R CML cells, U937 histiocytic lymphoma cells, HL60 acute myeloid leukemia cells, U266 multiple myeloma cells, and L929 fibroblast cells. However, probucol treatment significantly inhibited the viability of H929 and RPMI8226 multiple myeloma cells at the concentration of 0.5-10 µM and 5-10 µM, respectively. CONCLUSION: Probucol treatment slightly inhibited the viability of other cancer cell lines, but significantly inhibited the viability of H929 and RPMI8226 multiple myeloma cells. However, its effect was not potent, since a 50% reduction in cell viability could not be achieved at the concentrations of probucol treatment administered.

7.
Hematology ; 23(10): 765-770, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29945498

RESUMEN

OBJECTIVE: Chronic myleoid leukemia (CML) is a myeloproliferative disorder characterized with the constitutive activation of Bcr-Abl tyrosine kinase which is a target for imatinib, the first line treatment option for CML. Constitutive activation of NFκB and ß-catenin signaling promotes cellular proliferation and survival and resistance to Imatinib therapy in CML. Akirin-2 is a nuclear protein which is required for NFκB dependent gene expression as a cofactor and has been linked to Wnt/beta-catenin pathway. The purpose of this study is to examine Akirin-2, NFκB and ß-catenin in imatinib resistance of CML and to test if any direct physical protein-protein interaction exists between NFkB and both ß-catenin and Akirin-2. METHODS: RT-PCR and western blot were performed to determine Akirin-2, NFκB-p65 and ß-catenin gene and protein expressions, Co-immunoprecipitation and chromatin immunoprecipitation analysis were carried out to detect the direct physical interactions and binding of NFκB-p65 and ß-catenin proteins to MDR1 promoter region, respectively. RESULTS: ß-catenin and NFκB-p65 proteins bound to DNA promoter regions of MDR1 in imatinib-sensitive and resistant CML cells, whereas any direct protein-protein interaction could not be found between NFκB-p65 and Akirin-2 or ß-catenin proteins. Nuclear ß-catenin and NFκB-p65 levels increased in imatinib resistance. Moreover, increased Akirin-2 protein accumulation in the nucleus was shown for the first time in imatinib resistant CML cells. DISCUSSION: We show for the first time that Akirin-2 can be a novel biomarker in imatinib resistance. Targeting Akirin-2, NFκB and ß-catenin genes may provide an opportunity to overcome imatinib resistance in CML.


Asunto(s)
Biomarcadores de Tumor , Proteínas de Unión al ADN , Resistencia a Antineoplásicos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas de Neoplasias , Factor de Transcripción ReIA , Factores de Transcripción , beta Catenina , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Factor de Transcripción ReIA/biosíntesis , Factor de Transcripción ReIA/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , beta Catenina/biosíntesis , beta Catenina/genética
8.
Cell Mol Biol (Noisy-le-grand) ; 64(6): 23-30, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29808796

RESUMEN

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the t(9; 22) and the related oncogene, BCR-ABL. Tyrosine kinase activity of fusion protein BCR-ABL is the main cause of CML. Even if imatinib is used as a tyrosine kinase inhibitor (TKI) for CML therapy, drug resistance may occur in patients and the clinical failure of imatinib treatment in resistant patients had resulted with the use of another alternative TKIs. BCR-ABL dependent and independent molecular mechanisms have crucial roles in drug resistance. To reveal the underlying molecular mechanisms which play significant roles in imatinib resistance in CML, we established K562 imatinib-resistant cell line (K562r5) which was continuously exposed to (5µM) imatinib to investigate molecular mechanisms which play significant roles in drug resistance. First of all, we analyzed T315I, M351T, F315L and F359C/L/V mutations with DNA sequencing as a BCR-ABL dependent mechanism in our cell lines. Moreover, we investigated BCR-ABL independent mechanisms such as apoptosis, autophagy, drug transport and DNA repair which affect drug resistance in these cell lines. In vitro cell viability was determined by MTT assay. DNA sequencing analysis was performed to detect BCR-ABL mutations. The apoptotic effect of imatinib on CML cell lines was tested by flow cytometric Annexin V-PE staining and caspase activation assays. Apoptotic, autophagic, drug transporter and DNA repair genes expression levels were determined by RT-PCR. The conventional cytogenetic analysis was performed on K562s and K562r cells. Our results indicate that inhibition of apoptosis, induction of autophagy, overexpression of efflux gene MDR1 and down-regulation of influx gene OCT1 play crucial roles in the progression of imatinib resistance.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Mesilato de Imatinib/farmacología , Células K562/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Caspasas/metabolismo , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Activación Enzimática/efectos de los fármacos , Proteínas de Fusión bcr-abl/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación Missense , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Mutación Puntual
9.
Molecules ; 23(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565269

RESUMEN

NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM-50 mM) treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.


Asunto(s)
Aditivos Alimentarios/farmacología , FN-kappa B/metabolismo , Benzoato de Sodio/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Humanos , Nitrilos/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Proteína bcl-X/metabolismo
10.
Anticancer Agents Med Chem ; 17(14): 1924-1930, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28403785

RESUMEN

BACKGROUND: Retinoids which are vitamin A (Retinol) derivatives have been suggested to mediate the inhibition of cancer cell growth and apoptosis. It has been reported that all trans retinoic acid (ATRA) exhibited suppressive effects on different types of leukemia including chronic myelogenous leukemia. OBJECTIVE: In the present study, we aim to find out the effects of 6 synthetic N-(3,5,5,8,8-pentamethyl-5,6,7,8- tetrahydronaphthalene-2-yl)-carboxamide derivatives (compound 6-12) on cell viability and apoptotic pathways in K562 human chronic myelogenous leukemia cell line. METHODS: Cell viability and apoptosis were examined by spectrophotometric thiazolyl blue tetrazolium bromide (MTT) and caspase-3 assay, western blot, RT-PCR and flow cytometry. RESULTS: Our results indicated that compound 6 (5-(1,2-Dithiolan-3-yl)-N-(3,5,5,8,8-pentamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)pentanamide), 8 (4-(3,4-Dimethoxyphenyl)-N-(3,5,5,8,8-pentamethyl-5,6,7,8- tetrahydronaphthalen-2-yl)butanamide) and 11 (E-3-(4-Hydroxy-3-methoxyphenyl)-N-(3,5,5,8,8-pentamethyl- 5,6,7,8-tetrahydronaphthalen-2-yl)acrylamide) exhibited apoptotic effects in K562 human chronic myelogenous leukemia cell line and induced caspase 3, PARP cleavage, Bax/Bcl-2 ratio, Bad and Bim gene expressions. CONCLUSION: Some retinoid derivatives tested in this study induced apoptosis of K562 cells which suggest that these compounds may serve as potential agents in the treatment of chronic myelogenous leukemia.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Tetrahidronaftalenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Estructura Molecular , Relación Estructura-Actividad , Tetrahidronaftalenos/síntesis química , Tetrahidronaftalenos/química , Células Tumorales Cultivadas
11.
J Sex Med ; 14(1): 50-58, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065360

RESUMEN

INTRODUCTION: Erectile dysfunction (ED) worsens in men with diabetes. Human umbilical cord blood (HUCB), because of its widespread availability and low immunogenicity, is a valuable source for stem cell-based therapies. AIM: To determine the effect of intracavernous injection of HUCB mononuclear cells (MNCs) on ED in rats with diabetes induced by streptozotocin. METHODS: Thirty adult male Sprague-Dawley rats were equally divided into three groups: (i) control, (ii) diabetes induced by streptozotocin (35 mg/kg intravenously for 8 weeks), and (iii) diabetic rats treated with MNCs (1 × 106 cells by intracavernosal injection). The HUCB-MNCs isolated by the Ficoll-Hypaque technique were obtained from eight healthy donors and administered to diabetic rats after 4 weeks. MAIN OUTCOME MEASURES: The ratio of intracavernosal pressure to mean arterial pressure ratio; the protein expression of endothelial and neuronal markers, such as von Willebrand factor, neuronal nitric oxide synthase, hypoxia-inducible factor-1α, and vascular endothelium growth factor; and the relative area of smooth muscle to collagen using western blotting and Masson trichrome staining were determined. RESULTS: Diabetic rats demonstrated a significantly decreased ratio of intracavernosal pressure to mean arterial pressure (0.26 ± 0.04; P < .01) and treatment with MNCs restored erectile function in diabetic rats (0.67 ± 0.05) compared with control rats (0.56 ± 0.02). In bath studies, neurogenic relaxant and contractile responses were significantly decreased in diabetic cavernosal tissues, which were restored by treatment. The ratio of smooth muscle to collagen was partly recovered by treatment, whereas von Willebrand factor levels were not altered in any group. Neuronal nitric oxide synthase and vascular endothelium growth factor levels were decreased, which were not restored by treatment. Increased hypoxia-inducible factor-1α protein expression in the diabetic group was completely normalized in MNC-treated diabetic samples. CONCLUSION: These results suggest that HUCB-MNC treatment can enhance the recovery of erectile function and promote numerous activities such the contribution of the hypoxia-inducible factor-1α and von Willebrand factor pathway to the neurogenic erectile response of diabetic rats. HUCB-MNCs in the healing process could involve an adaptive regenerative response and appear to be a potential candidate for cell-based therapy in ED of men with diabetes. It is evident that HUCB could provide a realistic therapeutic modality for the treatment of diabetic ED.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Disfunción Eréctil/terapia , Sangre Fetal/trasplante , Animales , Western Blotting , Disfunción Eréctil/etiología , Humanos , Masculino , Óxido Nítrico Sintasa de Tipo I/metabolismo , Erección Peniana , Ratas , Ratas Sprague-Dawley , Estreptozocina
12.
Int J Mol Sci ; 17(7)2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27428957

RESUMEN

Methylsulfonylmethane (MSM) is an organic sulfur-containing compound which has been used as a dietary supplement for osteoarthritis. MSM has been shown to reduce oxidative stress and inflammation, as well as exhibit apoptotic or anti-apoptotic effects depending on the cell type or activating stimuli. However, there are still a lot of unknowns about the mechanisms of actions of MSM. In this study, MSM was tested on colon cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis revealed that MSM inhibited cell viability and increased apoptotic markers in both HCT-116 p53 +/+ and HCT-116 p53 -/- colon cancer cells. Increased poly (ADP-ribose) polymerase (PARP) fragmentation and caspase-3 activity by MSM also supported these findings. MSM also modulated the expression of various apoptosis-related genes and proteins. Moreover, MSM was found to increase c-Jun N-terminal kinases (JNK) phosphorylation in both cell lines, dose-dependently. In conclusion, our results show for the first time that MSM induces apoptosis in HCT-116 colon cancer cells regardless of their p53 status. Since p53 is defective in >50% of tumors, the ability of MSM to induce apoptosis independently of p53 may offer an advantage in anti-tumor therapy. Moreover, the remarkable effect of MSM on Bim, an apoptotic protein, also suggests its potential use as a novel chemotherapeutic agent for Bim-targeted anti-cancer therapies.


Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/patología , Dimetilsulfóxido/farmacología , Sulfonas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Citometría de Flujo , Humanos , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
13.
Cell Biochem Funct ; 33(3): 121-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25727912

RESUMEN

Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1ß, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Interferón gamma/toxicidad , Lipopolisacáridos/toxicidad , Óxido Nítrico/metabolismo , Ácido Tióctico/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácido Tióctico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA