Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817246

RESUMEN

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

2.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585944

RESUMEN

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

4.
Psychoneuroendocrinology ; 157: 106368, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659117

RESUMEN

C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastornos Mentales , Esquizofrenia , Humanos , Proteína C-Reactiva/genética , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Esquizofrenia/genética , Trastorno Bipolar/genética , Trastorno Bipolar/psicología , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética
5.
Nat Hum Behav ; 7(9): 1584-1600, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365406

RESUMEN

Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Personalidad , Humanos , Personalidad/genética , Fenotipo , Herencia Multifactorial/genética , Cognición
6.
Lancet Psychiatry ; 10(6): 441-451, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37208114

RESUMEN

BACKGROUND: The relationship between psychotic disorders and cannabis use is heavily debated. Shared underlying genetic risk is one potential explanation. We investigated the genetic association between psychotic disorders (schizophrenia and bipolar disorder) and cannabis phenotypes (lifetime cannabis use and cannabis use disorder). METHODS: We used genome-wide association summary statistics from individuals with European ancestry from the Psychiatric Genomics Consortium, UK Biobank, and International Cannabis Consortium. We estimated heritability, polygenicity, and discoverability of each phenotype. We performed genome-wide and local genetic correlations. Shared loci were identified and mapped to genes, which were tested for functional enrichment. Shared genetic liabilities to psychotic disorders and cannabis phenotypes were explored using causal analyses and polygenic scores, using the Norwegian Thematically Organized Psychosis cohort. FINDINGS: Psychotic disorders were more heritable than cannabis phenotypes and more polygenic than cannabis use disorder. We observed positive genome-wide genetic correlations between psychotic disorders and cannabis phenotypes (range 0·22-0·35) with a mixture of positive and negative local genetic correlations. Three to 27 shared loci were identified for the psychotic disorder and cannabis phenotype pairs. Enrichment of mapped genes implicated neuronal and olfactory cells as well as drug-gene targets for nicotine, alcohol, and duloxetine. Psychotic disorders showed a causal effect on cannabis phenotypes, and lifetime cannabis use had a causal effect on bipolar disorder. Of 2181 European participants from the Norwegian Thematically Organized Psychosis cohort applied in polygenic risk score analyses, 1060 (48·6%) were females and 1121 (51·4%) were males (mean age 33·1 years [SD 11·8]). 400 participants had bipolar disorder, 697 had schizophrenia, and 1044 were healthy controls. Within this sample, polygenic scores for cannabis phenotypes predicted psychotic disorders independently and improved prediction beyond the polygenic score for the psychotic disorders. INTERPRETATION: A subgroup of individuals might have a high genetic risk of developing a psychotic disorder and using cannabis. This finding supports public health efforts to reduce cannabis use, particularly in individuals at high risk or patients with psychotic disorders. Identified shared loci and their functional implications could facilitate development of novel treatments. FUNDING: US National Institutes of Health, the Research Council Norway, the South-East Regional Health Authority, Stiftelsen Kristian Gerhard Jebsen, EEA-RO-NO-2018-0535, European Union's Horizon 2020 Research and Innovation Programme, the Marie Sklodowska-Curie Actions, and University of Oslo Life Science.


Asunto(s)
Trastorno Bipolar , Cannabis , Abuso de Marihuana , Esquizofrenia , Trastornos Relacionados con Sustancias , Animales , Esquizofrenia/epidemiología , Esquizofrenia/genética , Trastorno Bipolar/epidemiología , Trastorno Bipolar/genética , Estudio de Asociación del Genoma Completo , Abuso de Marihuana/epidemiología , Abuso de Marihuana/genética , Predisposición Genética a la Enfermedad/genética
7.
Addict Biol ; 28(6): e13282, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252880

RESUMEN

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Depresión , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Sitios Genéticos
8.
Schizophr Bull ; 49(6): 1654-1664, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163672

RESUMEN

Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo/métodos , Vitamina D/genética , Esquizofrenia/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Sitios Genéticos
9.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757824

RESUMEN

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Epilepsias Parciales , Epilepsia Generalizada , Humanos , Trastorno del Espectro Autista/genética , Estudio de Asociación del Genoma Completo , Epilepsias Parciales/genética , Genómica , Epilepsia Generalizada/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética
10.
Res Sq ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38196616

RESUMEN

Alcohol use disorder (AUD) is highly heritable and burdensome worldwide. Genome-wide association studies (GWASs) can provide new evidence regarding the aetiology of AUD. We report a multi-ancestry GWASs across diverse ancestries focusing on a narrow AUD phenotype, using novel statistical tools in a total sample of 1,041,450 individuals [102,079 cases; European, 75,583; African, 20,689 (mostly African-American); Hispanic American, 3,449; East Asian, 2,254; South Asian, 104; descent]. Cross-ancestry functional analyses were performed with European and African samples. Thirty-seven genome-wide significant loci were identified, of which seven were novel for AUD and six for other alcohol phenotypes. Loci were mapped to genes enriched for brain regions relevant for AUD (striatum, hypothalamus, and prefrontal cortex) and potential drug targets (GABAergic, dopaminergic and serotonergic neurons). African-specific analysis yielded a unique pattern of immune-related gene sets. Polygenic overlap and positive genetic correlations showed extensive shared genetic architecture between AUD and both mental and general medical phenotypes, suggesting they are not only complications of alcohol use but also share genetic liability with AUD. Leveraging a cross-ancestry approach allowed identification of novel genetic loci for AUD and underscores the value of multi-ancestry genetic studies. These findings advance our understanding of AUD risk and clinically-relevant comorbidities.

11.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36100668

RESUMEN

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Encéfalo/patología , Fenotipo , Tálamo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Sitios Genéticos
12.
Am J Psychiatry ; 179(11): 833-843, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069018

RESUMEN

OBJECTIVE: Mental disorders are heritable and polygenic, and genome-wide genetic correlations (rg) have indicated widespread shared genetic risk across multiple disorders and related traits, mirroring their overlapping clinical characteristics. However, rg may underestimate the shared genetic underpinnings of mental disorders and related traits because it does not differentiate mixtures of concordant and discordant genetic effects from an absence of genetic overlap. Using novel statistical genetics tools, the authors aimed to evaluate the genetic overlap between mental disorders and related traits when accounting for mixed effect directions. METHODS: The authors applied the bivariate causal mixture model (MiXeR) to summary statistics for four mental disorders, four related mental traits, and height from genome-wide association studies (Ns ranged from 53,293 to 766,345). MiXeR estimated the number of "causal" variants for a given trait ("polygenicity"), the number of variants shared between traits, and the genetic correlation of shared variants (rgs). Local rg was investigated using LAVA. RESULTS: Among mental disorders, ADHD was the least polygenic (5.6K "causal" variants), followed by bipolar disorder (8.6K), schizophrenia (9.6K), and depression (14.5K). Most variants were shared across mental disorders (4.4K-9.3K) and between mental disorders and related traits (5.2K-12.8K), but with disorder-specific variations in rg and rgs. Overlap with height was small (0.7K-1.1K). MiXeR estimates correlated with LAVA local rg (r=0.88, p<0.001). CONCLUSIONS: There is extensive genetic overlap across mental disorders and related traits, with mixed effect directions and few disorder-specific variants. This suggests that genetic risk for mental disorders is predominantly differentiated by divergent effect distributions of pleiotropic genetic variants rather than disorder-specific variants. This represents a conceptual advance in our understanding of the landscape of shared genetic architecture across mental disorders, which may inform genetic discovery, biological characterization, nosology, and genetic prediction.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Trastornos Mentales , Humanos , Estudio de Asociación del Genoma Completo , Trastorno por Déficit de Atención con Hiperactividad/genética , Herencia Multifactorial/genética , Fenotipo , Trastorno Bipolar/genética , Trastornos Mentales/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple
13.
Neuropsychopharmacology ; 47(11): 1883-1891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953530

RESUMEN

Alcohol use disorder (AUD) is a pervasive and devastating mental illness with high comorbidity rates with other mental disorders. Understanding the genetic architecture of this comorbidity could be improved by focusing on intermediate traits that show positive genetic correlation with the disorders. Thus, we aimed to characterize the shared vs. unique polygenicity of AUD, alcohol consumption (AC) and mood instability (MOOD) -beyond genetic correlation, and boost discovery for jointly-associated loci. Summary statistics for MOOD (a binary measure of the tendency to report frequent mood swings), AC (number of standard drinks over a typical consumption week) and AUD GWASs (Ns > 200,000) were analyzed to characterize the cross-phenotype associations between MOOD and AC, MOOD and AUD and AC and AUD. To do so, we used a newly established pipeline that combines (i) the bivariate causal mixture model (MiXeR) to quantify polygenic overlap and (ii) the conjunctional false discovery rate (conjFDR) to discover specific jointly associated genomic loci, which were mapped to genes and biological functions. MOOD was highly polygenic (10.4k single nucleotide polymorphisms, SNPs, SD = 2k) compared to AC (4.9k SNPs, SD = 0.6k) and AUD (4.3k SNPs, SD = 2k). The polygenic overlap of MOOD and AC was twice that of MOOD and AUD (98% vs. 49%), with opposite genetic correlation (-0.2 vs. 0.23), as confirmed in independent samples. MOOD&AUD associated SNPs were significantly enriched for brain genes, conversely to MOOD&AC. Among 38 jointly associated loci, fifteen were novel for MOOD, AC and AUD. MOOD, AC and AUD were also strongly associated at the phenotypic level. Overall, using multilevel polygenic quantification, joint loci discovery and functional annotation methods, we evidenced that the polygenic overlap between MOOD and AC/AUD implicated partly shared biological underpinnings, yet, clearly distinct functional patterns between MOOD&AC and MOOD&AUD, suggesting new mechanisms for the comorbidity of AUD with mood disorders.


Asunto(s)
Alcoholismo , Herencia Multifactorial , Alcoholismo/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
14.
Am J Med Genet B Neuropsychiatr Genet ; 189(6): 207-218, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841185

RESUMEN

Recent genome-wide association studies of mood instability (MOOD) have found significant positive genetic correlation with major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. GWAS summary statistics for schizophrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619), attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD (n = 363,705) were analyzed using the bivariate causal mixture model and conjunctional false discovery rate methods. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg = 0.10-0.62). Of 10.4 K genomic variants influencing MOOD, 4 K-9.4 K influenced psychiatric disorders. Furthermore, MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25. Fifty-three jointly associated loci were overlapping across two or more disorders, seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, "synapse organization." The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions may relate to differences in the core clinical features of each disorder.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
15.
Addiction ; 117(3): 600-610, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472679

RESUMEN

BACKGROUND AND AIM: Schizophrenia (SCZ) and bipolar disorder (BD) have a high comorbidity of alcohol use disorder (AUD), and both comorbid AUD and excessive alcohol consumption (AC) have been linked to greater illness severity. We aimed to identify genomic loci jointly associated with SCZ, BD, AUD and AC to gain further insights into their shared genetic architecture. DESIGN: We analysed summary data (P values and Z scores) from genome-wide association studies (GWAS) using conjunctional false discovery rate (conjFDR) analysis, which increases power to discover shared genomic loci. We functionally characterized the identified loci using publicly available biological resources. SETTING: AUD and AC data provided by the Million Veteran Program, derived from the United States Department of Veterans Affairs Healthcare System. SCZ and BD data provided by the Psychiatric Genomics Consortium, based on cohorts from countries in Europe, North America and Australia. PARTICIPANTS: AUD (34 658 cases, 167 346 controls), AC (n = 200 680), SCZ (31 013 cases and 38 918 controls), BD (20 352 cases and 31 358 controls). All participants were of European ancestry. MEASUREMENTS: Genomic loci shared between alcohol traits, SCZ and BD at conjFDR <0.05. FINDINGS: Conditional Q-Q plots showed single-nucleotide polymorphism (SNP) enrichment for both alcohol traits across different levels of significance with SCZ and BD, and vice versa. Using conjFDR analysis we leveraged this genetic enrichment and identified several loci shared between SCZ and AUD (n = 28) and AC (n = 24), BD and AUD (n = 2) and AC (n = 8) at conjFDR <0.05. Among these loci, 24 are novel for AUD, 15 are novel for AC, three are novel for SCZ and one is novel for BD. There was a mixture of same and opposite effect directions among the shared loci. CONCLUSIONS: Alcohol use disorder and alcohol consumption share genomic loci with the psychiatric disorders schizophrenia and bipolar disorder with a mixed pattern of effect directions, indicating a complex genetic relationship between the phenotypes.


Asunto(s)
Alcoholismo , Trastorno Bipolar , Esquizofrenia , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/epidemiología , Alcoholismo/genética , Trastorno Bipolar/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Esquizofrenia/epidemiología , Esquizofrenia/genética
16.
JAMA Psychiatry ; 78(9): 1020-1030, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34160554

RESUMEN

Importance: Schizophrenia is a complex heritable disorder associated with many genetic variants, each with a small effect. While cortical differences between patients with schizophrenia and healthy controls are consistently reported, the underlying molecular mechanisms remain elusive. Objective: To investigate the extent of shared genetic architecture between schizophrenia and brain cortical surface area (SA) and thickness (TH) and to identify shared genomic loci. Design, Setting, and Participants: Independent genome-wide association study data on schizophrenia (Psychiatric Genomics Consortium and CLOZUK: n = 105 318) and SA and TH (UK Biobank: n = 33 735) were obtained. The extent of polygenic overlap was investigated using MiXeR. The specific shared genomic loci were identified by conditional/conjunctional false discovery rate analysis and were further examined in 3 independent cohorts. Data were collected from December 2019 to February 2021, and data analysis was performed from May 2020 to February 2021. Main Outcomes and Measures: The primary outcomes were estimated fractions of polygenic overlap between schizophrenia, total SA, and average TH and a list of functionally characterized shared genomic loci. Results: Based on genome-wide association study data from 139 053 participants, MiXeR estimated schizophrenia to be more polygenic (9703 single-nucleotide variants [SNVs]) than total SA (2101 SNVs) and average TH (1363 SNVs). Most SNVs associated with total SA (1966 of 2101 [93.6%]) and average TH (1322 of 1363 [97.0%]) may be associated with the development of schizophrenia. Subsequent conjunctional false discovery rate analysis identified 44 and 23 schizophrenia risk loci shared with total SA and average TH, respectively. The SNV associations of shared loci between schizophrenia and total SA revealed en masse concordant association between the discovery and independent cohorts. After removing high linkage disequilibrium regions, such as the major histocompatibility complex region, the shared loci were enriched in immunologic signature gene sets. Polygenic overlap and shared loci between schizophrenia and schizophrenia-associated regions of interest for SA (superior frontal and middle temporal gyri) and for TH (superior temporal, inferior temporal, and superior frontal gyri) were also identified. Conclusions and Relevance: This study demonstrated shared genetic loci between cortical morphometry and schizophrenia, among which a subset are associated with immunity. These findings provide an insight into the complex genetic architecture and associated with schizophrenia.


Asunto(s)
Corteza Cerebral/patología , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Esquizofrenia/patología , Adulto , Sitios Genéticos , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...