Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 139: 106698, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37418784

RESUMEN

Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.

2.
Future Microbiol ; 17: 1475-1486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36314364

RESUMEN

Background: Drug repurposing is a viable approach to expediting the tedious conventional drug discovery process, given rapidly increasing bacterial resistance. In this context, we have repurposed pyrvinium pamoate (PP) for its antibacterial activity against Staphylococcus aureus. Methods: US FDA-approved non-antibiotics were screened against clinically relevant bacterial pathogens to identify antibacterials. The hits were further evaluated utilizing a variety of preclinical parameters, following which in vivo efficacy was estimated in isolation and in combination in a murine neutropenic thigh infection model. Result: The screening identified PP exhibiting potent activity against S. aureus along with concentration-dependent killing. PP also showed a post-antibiotic effect of >22 h and significantly eradicated preformed S. aureus biofilms and intracellular S. aureus at 1× and 5× MIC, respectively. PP synergized with levofloxacin both in vitro and in vivo, resulting in ∼1.5 and ∼0.5 log10 CFU/g reduction against susceptible and resistant S. aureus infections, respectively, as compared with untreated control. Conclusion: Pyrvinium potentiates levofloxacin against levofloxacin-resistant S. aureus.


Treatment of drug-resistant bacterial infections urgently requires novel antibiotic combinations that can help in reducing the dose of antibiotic required as well as decreasing the emergence of resistance. In this context, pyrvinium pamoate is active as an antibacterial against clinically drug-resistant Staphylococcus aureus and combines well with levofloxacin against levofloxacin-resistant S. aureus. Given the paucity of available treatments for multidrug-resistant S. aureus, this is a very welcome new addition to the antibiotic arsenal.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
J Org Chem ; 87(5): 2435-2445, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35025500

RESUMEN

A Selectfluor-mediated approach for the synthesis of ß-acyl allyl sulfones/ß-acyl allyl benzotriazoles with excellent atom economy from readily available acetophenones/aryl acetylenes, aryl sulfinates/benzotriazoles, and dimethyl sulfoxide (DMSO) is described. In this protocol, DMSO acts as a dual-carbon synthon, resulting in a transition-metal-free construction of two C-C and one C-S or two C-C and one C-N bonds in one pot. This approach is extended to generate chemically diverse compounds. Additionally, ß-acyl allyl sulfones/ß-acyl allyl benzotriazoles were prepared from acetylenes instead of acetophenones.

4.
Arch Pharm (Weinheim) ; 354(10): e2000419, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34185337

RESUMEN

Novel inhibitors are needed to tackle tuberculosis. Herein, we report the 3-aryl-substituted imidazo[1,2-a]pyridines as potent antituberculosis agents. A small library of 3-aryl-substituted imidazo[1,2-a]pyridines was synthesized using direct arylation, followed by nitro reduction and finally Pd-catalyzed C-N coupling reactions. The compounds thus obtained were evaluated against Mycobacterium tuberculosis H37Rv. Compound 26 was identified as an antituberculosis lead with a minimum inhibitory concentration of 2.3 µg/ml against M. tuberculosis H37Rv. This compound showed a selectivity index of 35. The docking of 26 in the active site of the M. tuberculosis cytochrome bc1 complex cytochrome b subunit (Mtb QcrB) revealed key π-π interactions of compound 26 with the Tyr389 and Trp312 residues of Mtb QcrB.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Piridinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 30(8): 127037, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081449

RESUMEN

Herein, we report the synthesis and evaluation of pyrvinium-based antimalarial and antitubercular compounds. Pyrvinium is an FDA approved drug for the treatment of pinworm infection, and it has been reported to have antiparasitic and antimicrobial activities. Pyrvinium contains quinoline core coupled with pyrrole. We replaced the pyrrole with various aryl or heteroaryl substituents to generate pyrvinium analogs. The profiling of these compounds against malaria parasite P. falciparum 3D7 revealed analogs with better antimalarial activity than pyrvinium pamoate. Compound 14 and 16 showed IC50 of 23 nM and 60 nM against P. falciparum 3D7, respectively. These compounds were also effective against drug-resistant malaria parasite P. falciparum Dd2 with IC50 of 53 nM and 97 nM, respectively. The cytotoxicity against CHO-K1, HEK and NRK-49F cells revealed better selectivity index for these new analogs compared to pyrvinium. Additionally, this series of compounds showed activity against M. tuberculosis H37Rv; particularly compounds 10, 13, 14 and 16 showed equipotent antitubercular activity to that of pyrvinium pamoate. The compounds 14 and 16 should be taken forward as leads for further optimization.


Asunto(s)
Antimaláricos/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Compuestos de Pirvinio/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Compuestos de Pirvinio/síntesis química , Compuestos de Pirvinio/química , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
6.
Eur J Med Chem ; 178: 315-328, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31195172

RESUMEN

The dormant and resistant form of Mycobacterium tuberculosis presents a challenge in developing new anti-tubercular drugs. Herein, we report the synthesis and evaluation of trisubstituted thiazoles as antituberculosis agents. The SAR study has identified a requirement of hydrophobic substituent at C2, ester functionality at C4, and various groups with hydrogen bond acceptor character at C5 of thiazole scaffold. This has led to the identification of 13h and 13p as lead compounds. These compounds inhibited the dormant Mycobacterium tuberculosis H37Ra strain and M. tuberculosis H37Rv selectively. Importantly, 13h and 13p were non-toxic to CHO cells. The 13p showed activity against multidrug-resistant tuberculosis isolates.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tiazoles/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA