Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(3): eabq1637, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652513

RESUMEN

Memory encoding and retrieval rely on specific interactions across multiple brain areas. Although connections between individual brain areas have been extensively studied, the anatomical and functional specificity of neuronal circuit organization underlying information transfer across multiple brain areas remains unclear. Here, we combine transsynaptic viral tracing, optogenetic manipulations, and calcium dynamics recordings to dissect the multisynaptic functional connectivity of the amygdala. We identify a distinct basolateral amygdala (BLA) subpopulation that connects disynaptically to the periaqueductal gray (PAG) via the central amygdala (CeA). This disynaptic pathway serves as a core circuit element necessary for the learning and expression of conditioned fear and exhibits learning-related plasticity. Together, our findings demonstrate the utility of multisynaptic approaches for functional circuit analysis and indicate that disynaptic specificity may be a general feature of neuronal circuit organization.

2.
Nat Commun ; 13(1): 467, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075139

RESUMEN

Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.


Asunto(s)
Corteza Cerebral/fisiología , Hipocampo/fisiología , Respiración , Sueño , Animales , Corteza Cerebral/química , Electrofisiología , Hipocampo/química , Consolidación de la Memoria , Ratones , Ratones Endogámicos C57BL
3.
Nature ; 594(7863): 403-407, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040259

RESUMEN

Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.


Asunto(s)
Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Estimulación Acústica , Animales , Reacción de Prevención , Condicionamiento Clásico , Extinción Psicológica , Femenino , Masculino , Ratones , Inhibición Neural , Neuronas/fisiología
4.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33979634

RESUMEN

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Asunto(s)
Dopamina/metabolismo , Proteínas de Insectos/genética , Optogenética/métodos , Rodopsina/genética , Potenciales Sinápticos , Animales , Células Cultivadas , Culicidae , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Células HEK293 , Humanos , Proteínas de Insectos/metabolismo , Locomoción , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Rodopsina/metabolismo , Sustancia Negra/citología , Sustancia Negra/fisiología
5.
Front Neurosci ; 13: 728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396030

RESUMEN

Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.

6.
Nat Commun ; 9(1): 5400, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30573727

RESUMEN

Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastornos de Ansiedad/genética , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , Transmisión Sináptica/genética
7.
Neuron ; 97(4): 898-910.e6, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29398355

RESUMEN

Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.


Asunto(s)
Discriminación en Psicología/fisiología , Miedo/fisiología , Neuronas/fisiología , Sustancia Gris Periacueductal/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Generalización Psicológica/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Optogenética
8.
Nature ; 535(7612): 420-4, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409809

RESUMEN

Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.


Asunto(s)
Miedo/fisiología , Vías Nerviosas , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Reacción Cataléptica de Congelación , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Optogenética , Factores de Tiempo
9.
Nat Neurosci ; 19(4): 605-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26878674

RESUMEN

Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.


Asunto(s)
Amígdala del Cerebelo/fisiología , Relojes Biológicos/fisiología , Miedo/fisiología , Miedo/psicología , Optogenética/métodos , Corteza Prefrontal/fisiología , Estimulación Acústica/efectos adversos , Animales , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología
10.
Nature ; 505(7481): 92-6, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24256726

RESUMEN

Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.


Asunto(s)
Miedo/fisiología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Potenciales de Acción , Amígdala del Cerebelo/fisiología , Animales , Condicionamiento Psicológico , Extinción Psicológica , Miedo/psicología , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Vías Nerviosas , Optogenética , Ritmo Teta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA