Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 4: 476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348486

RESUMEN

Thiol oxidation to disulfides and the reverse reaction, i.e., disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e., thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.

2.
FEBS Lett ; 585(8): 1203-8, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21439281

RESUMEN

Seed plants and algae have two distinct FtsZ protein families, FtsZ1 and FtsZ2, involved in plastid division. Distinctively, seed plants and mosses contain two FtsZ2 family members (FtsZ2-1 and FtsZ2-2) thus raising the question of the role of these FtsZ2 paralogs in plants. We show that both FtsZ2 paralogs, in addition to being present in the stroma, are associated with the thylakoid membranes and that association is developmentally regulated. We also show that several FtsZ2-1 isoforms are present with distinct intra-plastidial localization. Mutant analyses show that FtsZ2-1 is essential for chloroplast division and that FtsZ2-2 plays a specific role in chloroplast morphology and internal organisation in addition to participating in chloroplast partition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestructura , Immunoblotting , Microscopía Electrónica , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Genetics ; 187(3): 793-802, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220358

RESUMEN

In plastids, the conversion of energy in the form of light to ATP requires key electron shuttles, the c-type cytochromes, which are defined by the covalent attachment of heme to a CXXCH motif. Plastid c-type cytochrome biogenesis occurs in the thylakoid lumen and requires a system for transmembrane transfer of reductants. Previously, CCDA and CCS5/HCF164, found in all plastid-containing organisms, have been proposed as two components of the disulfide-reducing pathway. In this work, we identify a small novel protein, CCS4, as a third component in this pathway. CCS4 was genetically identified in the green alga Chlamydomonas reinhardtii on the basis of the rescue of the ccs4 mutant, which is blocked in the synthesis of holoforms of plastid c-type cytochromes, namely cytochromes f and c(6). Although CCS4 does not display sequence motifs suggestive of redox or heme-binding function, biochemical and genetic complementation experiments suggest a role in the disulfide-reducing pathway required for heme attachment to apoforms of cytochromes c. Exogenous thiols partially rescue the growth phenotype of the ccs4 mutant concomitant with recovery of holocytochrome f accumulation, as does expression of an ectopic copy of the CCDA gene, encoding a trans-thylakoid transporter of reducing equivalents. We suggest that CCS4 might function to stabilize CCDA or regulate its activity.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Grupo Citocromo c/biosíntesis , Grupo Citocromo c/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Fotosíntesis/genética , Secuencia de Aminoácidos , Cloroplastos/genética , Cloroplastos/metabolismo , Grupo Citocromo c/genética , Citocromos f/genética , Citocromos f/metabolismo , Disulfuros/metabolismo , Hemo/genética , Hemo/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Plastidios/genética , Plastidios/metabolismo , Tilacoides/genética , Tilacoides/metabolismo
4.
Plant Cell ; 23(12): 4462-75, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22209765

RESUMEN

Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond-forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b(6)f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/enzimología , Vitamina K Epóxido Reductasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clonación Molecular , Citocromos f/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Disulfuros/metabolismo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Prueba de Complementación Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Transformación Genética , Técnicas del Sistema de Dos Híbridos , Vitamina K Epóxido Reductasas/genética
5.
J Biol Chem ; 285(39): 29738-49, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20628047

RESUMEN

The c-type cytochromes are metalloproteins with a heme molecule covalently linked to the sulfhydryls of a CXXCH heme-binding site. In plastids, at least six assembly factors are required for heme attachment to the apo-forms of cytochrome f and cytochrome c(6) in the thylakoid lumen. CCS5, controlling plastid cytochrome c assembly, was identified through insertional mutagenesis in the unicellular green alga Chlamydomonas reinhardtii. The complementing gene encodes a protein with similarity to Arabidopsis thaliana HCF164, which is a thylakoid membrane-anchored protein with a lumen-facing thioredoxin-like domain. HCF164 is required for cytochrome b(6)f biogenesis, but its activity and site of action in the assembly process has so far remained undeciphered. We show that CCS5 is a component of a trans-thylakoid redox pathway and operates by reducing the CXXCH heme-binding site of apocytochrome c prior to the heme ligation reaction. The proposal is based on the following findings: 1) the ccs5 mutant is rescued by exogenous thiols; 2) CCS5 interacts with apocytochrome f and c(6) in a yeast two-hybrid assay; and 3) recombinant CCS5 is able to reduce a disulfide in the CXXCH heme-binding site of apocytochrome f.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Citocromos c6/metabolismo , Citocromos c/metabolismo , Proteínas Protozoarias/metabolismo , Tiorredoxinas/metabolismo , Tilacoides/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Chlamydomonas reinhardtii/genética , Citocromos c/genética , Citocromos c6/genética , Citocromos f/genética , Citocromos f/metabolismo , Hemo/genética , Hemo/metabolismo , Mutación , Oxidación-Reducción , Proteínas Protozoarias/genética , Tiorredoxinas/genética , Tilacoides/genética
6.
Biochem J ; 409(1): 87-94, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17725544

RESUMEN

FtsZ is a key protein involved in bacterial and organellar division. Bacteria have only one ftsZ gene, while chlorophytes (higher plants and green alga) have two distinct FtsZ gene families, named FtsZ1 and FtsZ2. This raises the question of why chloroplasts in these organisms need distinct FtsZ proteins to divide. In order to unravel new functions associated with FtsZ proteins, we have identified and characterized an Arabidopsis thaliana FtsZ1 loss-of-function mutant. ftsZ1-knockout mutants are impeded in chloroplast division, and division is restored when FtsZ1 is expressed at a low level. FtsZ1-overexpressing plants show a drastic inhibition of chloroplast division. Chloroplast morphology is altered in ftsZ1, with chloroplasts having abnormalities in the thylakoid membrane network. Overexpression of FtsZ1 also induced defects in thylakoid organization with an increased network of twisting thylakoids and larger grana. We show that FtsZ1, in addition to being present in the stroma, is tightly associated with the thylakoid fraction. This association is developmentally regulated since FtsZ1 is found in the thylakoid fraction of young developing plant leaves but not in mature and old plant leaves. Our results suggest that plastid division protein FtsZ1 may have a function during leaf development in thylakoid organization, thus highlighting new functions for green plastid FtsZ.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Plastidios/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Inmunohistoquímica , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Biológicos , Orgánulos/metabolismo , Fenotipo , Proteínas de Plantas/genética , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA