Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Noncoding RNA Res ; 9(3): 970-994, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770106

RESUMEN

Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.

2.
Microb Pathog ; 185: 106459, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995882

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , ARN Circular/genética , Biomarcadores , ARN/genética , Tuberculosis/diagnóstico , Tuberculosis/genética , Mycobacterium tuberculosis/genética
3.
Pathol Res Pract ; 249: 154783, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37660656

RESUMEN

Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.


Asunto(s)
Esteroide Hidroxilasas , Virosis , Humanos , Progresión de la Enfermedad
4.
Pathol Res Pract ; 248: 154737, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37542860

RESUMEN

The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.


Asunto(s)
Hidroxicolesteroles , Oxiesteroles , Humanos , Hidroxicolesteroles/metabolismo , Colesterol , Factores de Transcripción
5.
Pathol Res Pract ; 249: 154740, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567034

RESUMEN

Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Hipertensión , Microbiota , Probióticos , Humanos , Disbiosis/complicaciones , Disbiosis/metabolismo , Disbiosis/microbiología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Probióticos/uso terapéutico , Inflamación/complicaciones
6.
Microb Pathog ; 183: 106300, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567323

RESUMEN

Tryptophanyl-tRNA synthetase (WRS) is a critical enzyme involved in protein synthesis, responsible for charging tRNA with the essential amino acid tryptophan. Recent studies have highlighted its novel role in stimulating innate immunity against bacterial and viral infections. However, the significance of WRS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains elusive. In this study, we aimed to investigate the complex interplay between WRS, inflammatory markers, Toll-like receptor-4 (TLR-4), and clinical outcomes in coronavirus disease 19 (COVID-19) patients. A case-control investigation comprised 127 COVID-19 patients, carefully classified as severe or moderate upon admission, and 112 healthy individuals as a comparative group. Blood samples were meticulously collected before treatment initiation, and WRS, interleukin-6 (IL-6), and C-reactive protein (CRP) concentrations were quantified using a well-established commercial ELISA kit. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples, and RNA was extracted for cDNA synthesis. Semi-quantitative real-time polymerase chain reaction (PCR) was employed to assess the relative expression of TLR-4. COVID-19 patients exhibited elevated levels of WRS, IL-6, CRP, and TLR-4 expression compared to healthy individuals, with the severe group displaying significantly higher levels than the moderate group. Notably, severe patients demonstrated substantial fluctuations in CRP, IL-6, and WRS levels over time, a pattern not observed in their moderate counterparts. Although no significant distinctions were observed in the dynamic alterations of WRS, IL-6, CRP, and TLR-4 expression between deceased and surviving patients, a trend emerged indicating higher IL-6_1 levels in deceased patients and elevated lactate dehydrogenase (LDH) levels in severe patients who succumbed to the disease. This pioneering research highlights the dynamic alterations of WRS in COVID-19 patients, providing valuable insights into the correlation between WRS, inflammatory markers, and disease severity within this population. Understanding the role of WRS in SARS-CoV-2 infection may open new avenues for therapeutic interventions targeting innate immunity to combat COVID-19.


Asunto(s)
COVID-19 , Triptófano-ARNt Ligasa , Humanos , Proteína C-Reactiva , Estudios de Casos y Controles , Interleucina-6 , Leucocitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Receptor Toll-Like 4 , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo
7.
Pathol Res Pract ; 249: 154725, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544130

RESUMEN

microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.


Asunto(s)
Hepatitis B , Hepatitis C , MicroARNs , Humanos , MicroARNs/metabolismo , Hepatitis C/patología , Virus de la Hepatitis B/genética , Hepacivirus/genética , Biomarcadores
8.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523968

RESUMEN

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Asunto(s)
Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/metabolismo , Genes Supresores de Tumor , Oncogenes , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética
9.
Pathol Res Pract ; 248: 154705, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37499519

RESUMEN

microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Inflamatorias del Intestino , MicroARNs , Ratones , Animales , Enfermedades Autoinmunes/genética , MicroARNs/genética , MicroARNs/metabolismo , Autoinmunidad/genética , Enfermedades Inflamatorias del Intestino/genética , Biomarcadores
10.
J Clin Lab Anal ; 37(11-12): e24941, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37431777

RESUMEN

During 2019, the SARS-CoV-2 emerged from China, and during months, COVID-19 spread in many countries around the world. The expanding data about pathogenesis of this virus could elucidate the exact mechanism by which COVID-19 caused death in humans. One of the pathogenic mechanisms of this disease is coagulation. Coagulation disorders that affect both venous and arterial systems occur in patients with COVID-19. The possible mechanism involved in the coagulation could be excessive inflammation induced by SARS-CoV-2. However, it is not yet clear well how SARS-CoV-2 promotes coagulopathy. However, some factors, such as pulmonary endothelial cell damage and some anticoagulant system disorders, are assumed to have an important role. In this study, we assessed conducted studies about COVID-19-induced coagulopathy to obtain clearer vision of the wide range of manifestations and possible pathogenesis mechanisms.


Asunto(s)
Trastornos de la Coagulación Sanguínea , COVID-19 , Tromboembolia , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Trastornos de la Coagulación Sanguínea/etiología , Tromboembolia/etiología , Inflamación/complicaciones , Anticoagulantes
11.
Int Immunopharmacol ; 121: 110546, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364331

RESUMEN

The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Metilaminas , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo
12.
World J Microbiol Biotechnol ; 39(8): 212, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256458

RESUMEN

Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.


Asunto(s)
Biopelículas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Metabolómica , Fosforilación , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
13.
Microb Pathog ; 176: 106020, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746316

RESUMEN

Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.


Asunto(s)
MicroARNs , Virosis , Animales , Caballos , Humanos , MicroARNs/genética , Regulación hacia Abajo , Genitales , Replicación Viral
15.
Infect Agent Cancer ; 18(1): 3, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658631

RESUMEN

The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.

16.
APMIS ; 131(4): 161-169, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36478304

RESUMEN

Autophagy is one of the important mechanisms in cell maintenance, which is considered associated with different pathological conditions such as viral infections. In this current study, the expression level and polymorphisms in some of the most important genes in the autophagy flux in COVID-19 patients were evaluated. This cross-sectional study was conducted among 50 confirmed COVID-19 patients and 20 healthy controls. The COVID-19 patients were divided into a severe group and a mild group according to their clinical features. The expression levels of ATG5, ATG16L1, LC3, and BECN1 were evaluated by the 2-∆∆CT method and beta-actin as the internal control. The polymorphisms of the ATG5 (rs506027, rs510432) and ATG16L1 (rs2241880 or T300A) were evaluated by the Sanger sequencing following the conventional PCR. The mean age of the included patients was 58.3 ± 17.9 and 22 (44%) were female. The expression levels of the LC3 were downregulated, while BECN1 and ATG16L1 genes represent an upregulation in COVID-19 patients. The polymorphism analysis revealed the ATG16L1 rs2241880 and AGT5 rs506027 polymorphism frequencies are statistically significantly different between COVID-19 and Healthy controls. The autophagy alteration represents an association with COVID-19 pathogenesis and severity. The current study is consistent with the alteration of autophagy elements in COVID-19 patients by mRNA expression-level evaluation. Furthermore, ATG16L1 rs2241880 and AGT5 rs506027 polymorphisms seem to be important in COVID-19 and are highly suggested for further investigations.


Asunto(s)
COVID-19 , Predisposición Genética a la Enfermedad , Humanos , Femenino , Masculino , Estudios Transversales , Polimorfismo de Nucleótido Simple , Proteínas Relacionadas con la Autofagia/genética , COVID-19/genética , Autofagia/genética
17.
Int Immunopharmacol ; 114: 109581, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36527874

RESUMEN

Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias/metabolismo , Mamíferos , Proteínas Represoras/metabolismo
18.
Malawi Med J ; 35(2): 101-105, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38264170

RESUMEN

Background: The Coronavirus disease 2019 (COVID-19) pandemic influences all around the world. The SARS-CoV-2 ORF8 accessory gene represents multiple functions in virus-host interaction. The current study aimed to compare the ORF8 substitutions and epitope features of these substitutions in the various SARS-CoV-2 outbreaks including delta, alpha, and wild type variants in Iran from 2020 to 2022. In addition, we evaluate B cell, HLA I and II epitopes, by in-silico approach to ORF8 binding site prediction. Methods: The samples were collected from patients diagnosed with SARS-CoV-2 infection via a real-time PCR assay. Then, a conventional PCR was carried out for ORF8 mutations analysis and further Sanger sequencing. Possible important alterations in epitope features of the ORF8 were evaluated by epitope mapping. B cell, HLA class I and II epitopes, evaluated by online databases ABCpred, NetMHCpan-4.1, and NetMHCIIpan-3.2, respectively. Results: The current study results could not represent novel variations in seven full-length ORF8 sequences or major ORF8 deletions in 80 evaluated samples. In addition, we could not find any ORF8 A382 during each outbreak of variants. Epitope mapping represents differences between the Alpha and other variants, especially in B cell potential epitopes and HLA I. Conclusion: The immunoinformatic evaluation of ORF8 suggested epitopes represent major differences for the Alpha variant in comparison with other variants. In addition, having mild pathogenesis of the Omicron variant does not seem to be associated with ORF8 alteration by phylogenetic evaluation. Future in-vitro studies for a clear conclusion about the epitope features of ORF8 are required.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales , Humanos , Epítopos , Inmunoinformática , Irán , Pandemias , Filogenia , SARS-CoV-2/genética , Proteínas Virales/genética
19.
Front Oncol ; 12: 1042196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483029

RESUMEN

MicroRNAs (miRNAs) are emerging as a significant modulator of immunity, and their abnormal expression/activity has been linked to numerous human disorders, such as cancer. It is now known that miRNAs potentially modulate the production of several metabolic processes in tumor-associated immune cells and indirectly via different metabolic enzymes that affect tumor-associated signaling cascades. For instance, Let-7 has been identified as a crucial modulator for the long-lasting survival of CD8+ T cells (naive phenotypes) in cancer by altering their metabolism. Furthermore, in T cells, it has been found that enhancer of zeste homolog 2 (EZH2) expression is controlled via glycolytic metabolism through miRNAs in patients with ovarian cancer. On the other hand, immunometabolism has shown us that cellular metabolic reactions and processes not only generate ATP and biosynthetic intermediates but also modulate the immune system and inflammatory processes. Based on recent studies, new and encouraging approaches to cancer involving the modification of miRNAs in immune cell metabolism are currently being investigated, providing insight into promising targets for therapeutic strategies based on the pivotal role of immunometabolism in cancer. Throughout this overview, we explore and describe the significance of miRNAs in cancer and immune cell metabolism.

20.
Future Oncol ; 18(38): 4209-4231, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36519554

RESUMEN

Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Neoplasias Urogenitales , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Próstata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...