Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eng Life Sci ; 23(9): e2300014, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664011

RESUMEN

Capillary biofilm reactors (CBRs) are attractive for growing photoautotrophic bacteria as they allow high cell-density cultivation. Here, we evaluated the CBR system's suitability to grow an artificial consortium composed of Synechocystis sp. PCC 6803 and Pseudomonas sp. VBL120. The impact of reactor material, flow rate, pH, O2, and medium composition on biomass development and long-term biofilm stability at different reactor scales was studied. Silicone was superior over other materials like glass or PVC due to its excellent O2 permeability. High flow rates of 520 µL min-1 prevented biofilm sloughing in 1 m capillary reactors, leading to a 54% higher biomass dry weight combined with the lowest O2 concentration inside the reactor compared to standard operating conditions. Further increase in reactor length to 5 m revealed a limitation in trace elements. Increasing trace elements by a factor of five allowed for complete surface coverage with a biomass dry weight of 36.8 g m-2 and, thus, a successful CBR scale-up by a factor of 25. Practical application: Cyanobacteria use light energy to upgrade CO2, thereby holding the potential for carbon-neutral production processes. One of the persisting challenges is low cell density due to light limitations and O2 accumulation often occurring in established flat panel or tubular photobioreactors. Compared to planktonic cultures, much higher cell densities (factor 10 to 100) can be obtained in cyanobacterial biofilms. The capillary biofilm reactor (CBR) offers good growth conditions for cyanobacterial biofilms, but its applicability has been shown only on the laboratory scale. Here, a first scale-up study based on sizing up was performed, testing the feasibility of this system for large-scale applications. We demonstrate that by optimizing nutrient supply and flow conditions, the system could be enlarged by factor 25 by enhancing the length of the reactor. This reactor concept, combined with cyanobacterial biofilms and numbering up, holds the potential to be applied as a flexible, carbon-neutral production platform for value-added compounds.

2.
Bioresour Technol ; 373: 128703, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746214

RESUMEN

Hydrogen (H2) is a promising fuel in the context of climate neutral energy carriers and photosynthesis-driven H2-production is an interesting option relying mainly on sunlight and water as resources. However, this approach depends on suitable biocatalysts and innovative photobioreactor designs to maximize cell performance and H2 titers. Cyanobacteria were used as biocatalysts in capillary biofilm photobioreactors (CBRs). We show that biofilm formation/stability depend on light and CO2 availabilityH2 production rates correlate with these parameters but differ between Anabaena and Nostoc. We demonstrate that high light and corresponding O2 levels influence biofilm stability in CBR. By adjusting these parameters, biofilm formation/stability could be enhanced, and H2 formation was stable for weeks. Final biocatalyst titers reached up to 100 g l-1 for N. punctiforme atcc 29133 NHM5 and Anabaena sp. pcc 7120 AMC 414. H2 production rates were up to 300 µmol H2 l-1h-1 and 3 µmol H2 gcdw-1h-1 in biofilms.


Asunto(s)
Anabaena , Nostoc , Fotosíntesis , Fotobiorreactores/microbiología , Hidrógeno
3.
Curr Opin Biotechnol ; 80: 102892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669448

RESUMEN

Cyanobacteria as phototrophic microorganisms bear great potential to produce chemicals from sustainable resources such as light and CO2. Most studies focus on either strain engineering or tackling metabolic constraints. Recently gained knowledge on internal electron and carbon fluxes and their regulation provides new opportunities to efficiently channel cellular resources toward product formation. Concomitantly, novel photobioreactor concepts are developed to ensure sufficient light supply. This review summarizes the newest developments in the field of cyanobacterial engineering to finally establish photosynthesis-based production processes. A holistic approach tackling genetic, metabolic, and biochemical engineering in parallel is considered essential to turn their application into an ecoefficient and economically feasible option for a future green bioeconomy.


Asunto(s)
Cianobacterias , Fotosíntesis , Fotosíntesis/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Ciclo del Carbono , Ingeniería Metabólica
4.
Metab Eng ; 70: 206-217, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085781

RESUMEN

Microbial bioprocessing based on orthologous pathways constitutes a promising approach to replace traditional greenhouse gas- and energy-intensive production processes, e.g., for adipic acid (AA). We report the construction of a Pseudomonas taiwanensis strain able to efficiently convert cyclohexane to AA. For this purpose, a recently developed 6-hydroxyhexanoic acid (6HA) synthesis pathway was amended with alcohol and aldehyde dehydrogenases, for which different expression systems were tested. Thereby, genes originating from Acidovorax sp. CHX100 and the XylS/Pm regulatory system proved most efficient for the conversion of 6HA to AA as well as the overall cascade enabling an AA formation activity of up to 48.6 ± 0.2 U gCDW-1. The optimization of biotransformation conditions enabled 96% conversion of 10 mM cyclohexane with 100% AA yield. During recombinant gene expression, the avoidance of glucose limitation was found to be crucial to enable stable AA formation. The biotransformation was then scaled from shaking flask to a 1 L bioreactor scale, at which a maximal activity of 22.6 ± 0.2 U gCDW-1 and an AA titer of 10.2 g L-1 were achieved. The principal feasibility of product isolation was shown by the purification of 3.4 g AA to a purity of 96.1%. This study presents the efficient bioconversion of cyclohexane to AA by means of a single strain and thereby sets the basis for an environmentally benign production of AA and related polymers such as nylon 6,6.


Asunto(s)
Adipatos , Pseudomonas , Adipatos/metabolismo , Biocatálisis , Ingeniería Metabólica , Pseudomonas/genética , Pseudomonas/metabolismo
5.
Biotechnol Bioeng ; 118(7): 2719-2733, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844297

RESUMEN

Cyclohexanone monooxygenase (CHMO), a member of the Baeyer-Villiger monooxygenase family, is a versatile biocatalyst that efficiently catalyzes the conversion of cyclic ketones to lactones. In this study, an Acidovorax-derived CHMO gene was expressed in Pseudomonas taiwanensis VLB120. Upon purification, the enzyme was characterized in vitro and shown to feature a broad substrate spectrum and up to 100% conversion in 6 h. Furthermore, we determined and compared the cyclohexanone conversion kinetics for different CHMO-biocatalyst formats, that is, isolated enzyme, suspended whole cells, and biofilms, the latter two based on recombinant CHMO-containing P. taiwanensis VLB120. Biofilms showed less favorable values for KS (9.3-fold higher) and kcat (4.8-fold lower) compared with corresponding KM and kcat values of isolated CHMO, but a favorable KI for cyclohexanone (5.3-fold higher). The unfavorable KS and kcat values are related to mass transfer- and possibly heterogeneity issues and deserve further investigation and engineering, to exploit the high potential of biofilms regarding process stability. Suspended cells showed only 1.8-fold higher KS , but 1.3- and 4.2-fold higher kcat and KI values than isolated CHMO. This together with the efficient NADPH regeneration via glucose metabolism makes this format highly promising from a kinetics perspective.


Asunto(s)
Proteínas Bacterianas , Biocatálisis , Comamonadaceae/genética , Ciclohexanonas/metabolismo , Oxigenasas , Pseudomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Comamonadaceae/enzimología , Oxidación-Reducción , Oxigenasas/genética , Oxigenasas/metabolismo , Pseudomonas/enzimología , Pseudomonas/genética
6.
Eng Life Sci ; 21(3-4): 258-269, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33716623

RESUMEN

In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas taiwanensis VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from Caulobacter crescentus into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m-2 d-1 were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50-60%) of rotating bed cassettes, side-products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70-80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m-2 d-1 and a substrate conversion of 60% was achieved in the RBR.

7.
Microb Biotechnol ; 14(3): 1011-1025, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33369139

RESUMEN

6-Aminohexanoic acid (6AHA) is a vital polymer building block for Nylon 6 production and an FDA-approved orphan drug. However, its production from cyclohexane is associated with several challenges, including low conversion and yield, and severe environmental issues. We aimed at overcoming these challenges by developing a bioprocess for 6AHA synthesis. A mixed-species approach turned out to be most promising. Thereby, Pseudomonas taiwanensis VLB120 strains harbouring an upstream cascade converting cyclohexane to either є-caprolactone (є-CL) or 6-hydroxyhexanoic acid (6HA) were combined with Escherichia coli JM101 strains containing the corresponding downstream cascade for the further conversion to 6AHA. ε-CL was found to be a better 'shuttle molecule' than 6HA enabling higher 6AHA formation rates and yields. Mixed-species reaction performance with 4 g l-1 biomass, 10 mM cyclohexane, and an air-to-aqueous phase ratio of 23 combined with a repetitive oxygen feeding strategy led to complete substrate conversion with 86% 6AHA yield and an initial specific 6AHA formation rate of 7.7 ± 0.1 U gCDW -1 . The same cascade enabled 49% 7-aminoheptanoic acid yield from cycloheptane. This combination of rationally engineered strains allowed direct 6AHA production from cyclohexane in one pot with high conversion and yield under environmentally benign conditions.


Asunto(s)
Ácido Aminocaproico , Pseudomonas , Ácido Aminocaproico/metabolismo , Biocatálisis , Ciclohexanos , Pseudomonas/metabolismo
8.
N Biotechnol ; 60: 200-206, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33127412

RESUMEN

Omega hydroxycarboxylic acids (ω-HAs) possess two functional groups, a hydroxyl group and a carboxyl group, and are essential precursors for the production of biodegradable polyester polymers. In this work, an Acidovorax mutant was investigated as a whole-cell biocatalyst for the conversion of cycloalkanes to their respective ω-hydroxycarboxylic acids. This Acidovorax sp. strain CHX100 originated from a wastewater treatment plant and uses cyclohexane as the sole source of carbon and energy with excellent growth rates (0.199 h-1). The metabolic efficiency of Acidovorax CHX100 is based on a highly efficient enzyme cascade used for the mineralization of cyclohexane. A deletion of 6-hydroxyhexanoate dehydrogenase in the native cycloalkane pathway resulted in the Acidovorax sp. strain CHX100 Δ6HX mutant, which accumulated short ω-hydroxycarboxylic acids (C5 to C10) from cycloalkanes. This mutant transformed cyclopentane and cyclohexane (5 mM) to 5-hydroxypentanoic acid and 6-hydroxyhexanoic acid, respectively, with a molar conversion above 98% in 6 h. An elementary environmental and economical assessment based on E-factor and biocatalyst yield suggests the use of inexpensive electron donor and carbon sources, with subsequent efforts to minimize waste generation. Such an early-stage analysis highlights the main bottlenecks that need to be solved in developing a sustainable bioprocess.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Comamonadaceae/enzimología , Cicloparafinas/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Ácidos Carboxílicos/química , Comamonadaceae/citología , Comamonadaceae/genética , Cicloparafinas/química , Estructura Molecular , Mutación
9.
Front Bioeng Biotechnol ; 8: 588729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042983

RESUMEN

In this study, the growth and catalytic performance of mixed-species biofilms consisting of photoautotrophic Synechocystis sp. PCC 6803 and chemoheterotrophic Pseudomonas sp. VLB120 was investigated. Both strains contained a cytochrome P450 monooxygenase enzyme system catalyzing the oxyfunctionalization of cyclohexane to cyclohexanol. Biofilm cultivation was performed in capillary glass reactors made of either, borosilicate glass (Duran) or quartz glass, in different flow regimes. Consequently, four phases could be distinguished for mixed-species biofilm growth and development in the glass-capillaries. The first phase represents the limited growth of mixed-species biofilm in the single-phase flow condition. The second phase includes a rapid increase in biofilm spatial coverage after the start of air-segments. The third phase starts with the sloughing of large biofilm patches from well-grown biofilms, and the final stage consists of biofilm regrowth and the expansion of the spatial coverage. The catalytic performance of the mixed-species biofilm after the detachment process was compared to a well-grown biofilm. With an increase in the biofilm surface coverage, the cyclohexanol production rate improved from 1.75 to 6.4 g m-2 d-1, resulting in comparable production rates to the well-grown biofilms. In summary, high productivities can be reached for biofilms cultivated in glass capillaries, but stable product formation was disturbed by sloughing events.

10.
Biotechnol J ; 15(11): e2000091, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32735401

RESUMEN

The current industrial production of polymer building blocks such as ε-caprolactone (ε-CL) and 6-hydroxyhexanoic acid (6HA) is a multi-step process associated with critical environmental issues such as the generation of toxic waste and high energy consumption. Consequently, there is a demand for more eco-efficient and sustainable production routes. This study deals with the generation of a platform organism that converts cyclohexane to such polymer building blocks without the formation of byproducts and under environmentally benign conditions. Based on kinetic and thermodynamic analyses of the individual enzymatic steps, a 4-step enzymatic cascade in Pseudomonas taiwanensis VLB120 is rationally engineered via stepwise biocatalyst improvement on the genetic level. It is found that the intermediate product cyclohexanol severely inhibits the cascade which could be optimized by enhancing the expression level of downstream enzymes. The integration of a lactonase enables exclusive 6HA formation without side products. The resulting biocatalyst shows a high activity of 44.8 ± 0.2 U gCDW -1 and fully converts 5 mm cyclohexane to 6HA within 3 h. This platform organism can now serve as a basis for the development of greener production processes for polycaprolactone and related polymers.


Asunto(s)
Ciclohexanos , Pseudomonas , Biocatálisis , Poliésteres , Pseudomonas/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-32175317

RESUMEN

Cytochrome P450 monooxygenases (Cyps) effectively catalyze the regiospecific oxyfunctionalization of inert C-H bonds under mild conditions. Due to their cofactor dependency and instability in isolated form, oxygenases are preferably applied in living microbial cells with Pseudomonas strains constituting potent host organisms for Cyps. This study presents a holistic genetic engineering approach, considering gene dosage, transcriptional, and translational levels, to engineer an effective Cyp-based whole-cell biocatalyst, building on recombinant Pseudomonas taiwanensis VLB120 for cyclohexane hydroxylation. A lac-based regulation system turned out to be favorable in terms of orthogonality to the host regulatory network and enabled a remarkable specific whole-cell activity of 34 U gCDW -1. The evaluation of different ribosomal binding sites (RBSs) revealed that a moderate translation rate was favorable in terms of the specific activity. An increase in gene dosage did only slightly elevate the hydroxylation activity, but severely impaired growth and resulted in a large fraction of inactive Cyp. Finally, the introduction of a terminator reduced leakiness. The optimized strain P. taiwanensis VLB120 pSEVA_Cyp allowed for a hydroxylation activity of 55 U gCDW -1. Applying 5 mM cyclohexane, molar conversion and biomass-specific yields of 82.5% and 2.46 mmolcyclohexanol gbiomass -1 were achieved, respectively. The strain now serves as a platform to design in vivo cascades and bioprocesses for the production of polymer building blocks such as ε-caprolactone.

12.
Methods Mol Biol ; 2100: 437-452, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31939142

RESUMEN

Biofilms, a natural form of immobilized whole cells, are currently being investigated as a robust biocatalyst for the production of chemicals. Fluidic conditions and reactor geometry severely influence biofilm growth, development, and reaction performance. However, there is a missing link between the in situ characterization of biofilms on microscale setups and macroscale reactors because of the difference in reactor geometry and fluidic conditions. In this protocol, we describe the assembly and operation of flow cell and flow reactor setups with identical system geometry and segmented flow conditions to link biofilm characterization to reactor performance. The flow cell setup enables the in situ characterization of biofilm growth, structural development, and cell viability by utilizing confocal laser scanning microscopy (CLSM). Whereas, the laboratory scale flow reactor allows the determination of overall biofilm dry mass, catalytic activity, and final product titer during biocatalysis. Finally, CLSM image acquisition and the following data analysis are briefly described.


Asunto(s)
Biopelículas , Dispositivos Laboratorio en un Chip , Microscopía Confocal , Biocatálisis , Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Microscopía Confocal/métodos
13.
MethodsX ; 6: 1822-1831, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467861

RESUMEN

The biocatalytic application of photoautotrophic organisms is a promising alternative for the production of biofuels and value-added compounds as they do not rely on carbohydrates as a source of carbon, electrons, and energy. Although the photoautotrophic organisms hold potential for the development of sustainable processes, suitable reactor concepts that allow high cell density (HCD) cultivation of photoautotrophic microorganisms are limited. Such reactors need a high surface to volume ratio to enhance light availability. Furthermore, the accumulation of high oxygen concentrations as a consequence of oxygenic photosynthesis, and its inhibitory effect on cell growth needs to be prevented. Here, we present a method for HCD cultivation of oxygenic phototrophs based on the co-cultivation of different trophies in a biofilm format to avoid high oxygen partial-pressure and attain HCDs of up to 51.8 gBDW L-1 on a lab scale. In this article, we show: •A robust method for mixed trophies biofilm cultivation in capillary reactors•Set-up and operation of a biofilm capillary reactor•A method to quantify oxygen in the continuous biofilm capillary reactor.

14.
Data Brief ; 25: 104059, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31211205

RESUMEN

Photosynthetic microorganisms offer promising perspectives for the sustainable production of value-added compounds. Nevertheless, the cultivation of phototrophic organisms to high cell densities (HCDs) is hampered by limited reactor concepts. Co-cultivation of the photoautotrophic Synechocystis sp. PCC 6803 and the chemoheterotrophic P. taiwanensis VLB 120 enabled HCDs up to 51.8 gCDW L-1. Respective biofilms have been grown as a biofilm in capillary flow-reactors, and oxygen evolution, total biomass, as well as the ratio of the two strains, have been followed under various cultivation conditions. Furthermore, biofilm formation on a microscopic level was analyzed via confocal laser scanning microscopy using a custom made flow-cell setup. The concept of mixed trophies co-cultivation was coupled to biotransformation, namely the oxyfunctionalization of cyclohexane to cyclohexanol. For benchmarking, the performance of the phototrophic reaction was compared to the chemical process, and to a biotechnological approach using a heterotrophic organism only. The data presented refer to our research paper "Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol" Hoschek et al., 2019.

15.
Biotechnol J ; 14(8): e1800724, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31106963

RESUMEN

Oxygenase-containing cyanobacteria constitute promising whole-cell biocatalysts for oxyfunctionalization reactions. Photosynthetic water oxidation thereby delivers the required cosubstrates, that is activated reduction equivalents and O2 , sustainably. A recombinant Synechocystis sp. PCC 6803 strain showing unprecedentedly high photosynthesis-driven oxyfunctionalization activities is developed, and its technical applicability is evaluated. The cells functionally synthesize a heterologous cytochrome P450 monooxygenase enabling cyclohexane hydroxylation. The biocatalyst-specific reaction rate is found to be light-dependent, reaching 26.3 ± 0.6 U gCDW -1 (U = µmol min-1 and cell dry weight [CDW]) at a light intensity of 150 µmolphotons m-2 s-1 . In situ substrate supply via a two-liquid phase system increases the initial specific activity to 39.2 ± 0.7 U gCDW -1 and stabilizes the biotransformation by preventing cell toxification. This results in a tenfold increased specific product yield of 4.5 gcyclohexanol gCDW -1 as compared to the single aqueous phase system. Subsequently, the biotransformation is scaled from a shake flask to a 3 L stirred-tank photobioreactor setup. In situ O2 generation via photosynthetic water oxidation allows a nonaerated process operation, thus circumventing substrate evaporation as the most critical factor limiting the process performance and stability. This study for the first time exemplifies the technical applicability of cyanobacteria for aeration-independent light-driven oxyfunctionalization reactions involving highly toxic and volatile substrates.


Asunto(s)
Ciclohexanos/metabolismo , Ciclohexanoles/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Biotecnología/instrumentación , Biotecnología/métodos , Biotransformación , Medios de Cultivo/química , Ciclohexanos/toxicidad , Hidroxilación , Luz , Microorganismos Modificados Genéticamente , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Fotobiorreactores , Synechocystis/efectos de los fármacos , Synechocystis/genética
16.
Bioresour Technol ; 282: 171-178, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30861446

RESUMEN

Photosynthetic microorganisms have enormous potential to produce fuels and value-added compounds sustainably. Efficient cultivation concepts that enable optimal light and CO2 supply are necessary for the realization of high cell densities (HCDs), and subsequently for process implementation. We introduce capillary biofilm reactors with a high surface to volume ratio, and thus enhanced light availability, enabling HCDs of photo-autotrophic microorganisms. However, oxygenic photosynthesis leads to O2 accumulation in such systems, impairing biofilm growth. We combined O2 producing Synechocystis with O2 respiring Pseudomonas using proto-cooperation to achieve HCDs of up to 51.8 gBDW L-1. This concept was coupled to the challenging C-H oxyfunctionalization of cyclohexane to cyclohexanol with a remarkable conversion of >98% and selectivity of 100% (KA oil). High photoautotrophic biocatalyst concentrations were established and resulted in a productivity of 3.76 gcyclohexanol m-2 day-1, which was maintained for at least one month.


Asunto(s)
Biopelículas , Ciclohexanos/metabolismo , Ciclohexanoles/metabolismo , Synechocystis/fisiología , Reactores Biológicos , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis , Pseudomonas/metabolismo
17.
Biotechnol Bioeng ; 115(2): 312-320, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28986995

RESUMEN

Chemical synthesis of lactones from cycloalkanes is a multi-step process challenged by limitations in reaction efficiency (conversion and yield), atom economy (by-products) and environmental performance. A heterologous pathway comprising novel enzymes with compatible kinetics was designed in Pseudomonas taiwanensis VLB120 enabling in-vivo cascade for synthesizing lactones from cycloalkanes. The respective pathway included cytochrome P450 monooxygenase (CHX), cyclohexanol dehydrogenase (CDH), and cyclohexanone monooxygenase (CHXON) from Acidovorax sp. CHX100. Resting (non-growing) cells of the recombinant host P. taiwanensis VLB120 converted cyclohexane, cyclohexanol, and cyclohexanone to ϵ-caprolactone at 22, 80-100, and 170 U gCDW-1 , respectively. Cyclohexane (5 mM) was completely converted with a selectivity of 65% for ϵ-caprolactone formation in 2 hr without accumulation of intermediate products. Promiscuity of the whole-cell biocatalyst gave access to analogous lactones from cyclooctane and cyclodecane. A total product concentration of 2.3 g L-1 and a total turnover number of 36,720 was achieved over 5 hr with a biocatalyst concentration of 6.8 gCDW L-1 .


Asunto(s)
Cicloparafinas/metabolismo , Lactonas/metabolismo , Pseudomonas/metabolismo , Biocatálisis , Reactores Biológicos/microbiología , Caproatos/metabolismo , Redes y Vías Metabólicas , Oxigenasas/metabolismo
18.
Biotechnol Bioeng ; 113(1): 52-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26153144

RESUMEN

The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW (-1) were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous-air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g L tube (-1) h(-1) for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Comamonadaceae/enzimología , Ciclohexanos/metabolismo , Ciclohexanoles/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pseudomonas/metabolismo , Pseudomonas/fisiología , Comamonadaceae/genética , Ciclohexanos/toxicidad , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Appl Microbiol Biotechnol ; 99(16): 6889-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25935342

RESUMEN

Acidovorax sp. CHX100 has a remarkable ability for growth on short cycloalkanes (C5-C8) as a sole source of carbon and energy under aerobic conditions via an uncharacterized mechanism. Transposon mutagenesis of Acidovorax sp. CHX100 revealed a novel cytochrome P450 monooxygenase (CYP450chx) which catalyzed the transformation of cyclohexane to cyclohexanol. Primer walking methods categorized CYP450chx as cytochrome P450 class I taking into account its operon structure: monooxygenase, FAD oxidoreductase, and ferredoxin. CYP450chx was successfully cloned and expressed in Escherichia coli JM109. The activity of CYP450chx was demonstrated by means of the indole co-oxidation. Biotransformation capability of CYP450chx was confirmed through the catalysis of cycloalkanes (C5-C8) to their respective cyclic alcohols.


Asunto(s)
Comamonadaceae/enzimología , Ciclohexanos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Biotransformación , Clonación Molecular , Análisis por Conglomerados , Comamonadaceae/genética , Ciclohexanoles , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Insercional , Oxidación-Reducción , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
20.
Curr Opin Biotechnol ; 35: 52-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25835779

RESUMEN

The recent progress in sustainable chemistry and in synthetic biology increased the interest of chemical and pharmaceutical industries to implement microbial processes for chemical synthesis. However, most organisms used in biotechnological applications are not evolved by Nature for the production of hydrophobic, non-charged, volatile, or toxic compounds. In order to overcome this discrepancy, bioprocess design should consist of an integrated approach addressing pathway, cellular, reaction, and process engineering. Highlighting selected examples, we show that surprisingly often Nature provides conceptual solutions to enable chemical synthesis. Complemented by established methods from (bio)chemical and metabolic engineering, these concepts offer potential strategies yet to be explored and translated into innovative technical solutions enabling sustainable microbial production of non-natural chemicals.


Asunto(s)
Fenómenos Químicos , Animales , Biocatálisis , Reactores Biológicos , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...