Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 167(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33502310

RESUMEN

Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Vibrio cholerae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Periplasma/genética , Periplasma/metabolismo , Dominios Proteicos , Alineación de Secuencia , Transducción de Señal , Vibrio cholerae/química , Vibrio cholerae/fisiología
2.
PLoS One ; 12(10): e0186291, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29045455

RESUMEN

The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Espermidina/análogos & derivados , Vibrio cholerae/genética , Catecoles/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Hierro/metabolismo , Oxazoles/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Espermidina/biosíntesis , Espermidina/metabolismo , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/patogenicidad
3.
J Biol Chem ; 292(41): 17025-17036, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28827313

RESUMEN

The aquatic bacterium and human intestinal pathogen, Vibrio cholerae, senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress V. cholerae biofilm formation, respectively. These effects are relevant for understanding V. cholerae pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3'-5') cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA. However, the levels of spermidine required to inhibit biofilm formation through this pathway are unlikely to be encountered by V. cholerae in aquatic reservoirs or within the human host during infection. We therefore hypothesized that other polyamines in the gastrointestinal tract may control V. cholerae biofilm formation at physiological levels. The tetramine spermine has been reported to be present at nearly 50 µm concentrations in the intestinal lumen. Here, we report that spermine acts as an exogenous cue that inhibits V. cholerae biofilm formation through the NspS-MbaA signaling system. We found that this effect probably occurs through a direct interaction of spermine with NspS, as purified NspS protein could bind spermine in vitro Spermine also inhibited biofilm formation by altering the transcription of the vps genes involved in biofilm matrix production. Global c-di-GMP levels were unaffected by spermine supplementation, suggesting that biofilm formation may be regulated by variations in local rather than global c-di-GMP pools. Finally, we propose a model illustrating how the NspS-MbaA signaling system may communicate exogenous polyamine content to the cell to control biofilm formation in the aquatic environment and within the human intestine.


Asunto(s)
Biopelículas/efectos de los fármacos , Proteínas Periplasmáticas , Hidrolasas Diéster Fosfóricas , Transducción de Señal/efectos de los fármacos , Espermina/farmacología , Vibrio cholerae , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Modelos Biológicos , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Vibrio cholerae/química , Vibrio cholerae/fisiología
4.
Microbiology (Reading) ; 160(Pt 5): 832-843, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24530989

RESUMEN

The polyamines norspermidine and spermidine are among the environmental signals that regulate Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biopelículas/crecimiento & desarrollo , Transducción de Señal , Espermidina/análogos & derivados , Espermidina/metabolismo , Vibrio cholerae O139/efectos de los fármacos , Vibrio cholerae O139/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
5.
Biotechnol Lett ; 35(11): 1715-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23881324

RESUMEN

Polyamines play an essential role in biofilm formation of diverse Gram-negative and Gram-positive bacteria. Biosynthetic pathways and transport systems for diverse polyamines have been identified as key components of bacterial biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo
6.
PLoS One ; 8(4): e60765, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593304

RESUMEN

Vibrio cholerae is the causative agent of the severe enteric disease cholera. To cause cholera the bacterium must be able to synthesize both cholera toxin (CT) and toxin-coregulated pilus (TCP) which mediates autoagglutination and is required for colonization of the small intestine. Only a few environmental signals have been shown to regulate V. cholerae virulence gene expression. Polyamines, which are ubiquitous in nature, and have been implicated in regulating virulence gene expression in other bacteria, have not been extensively studied for their effect on V. cholerae virulence properties. The objective of this study was to test the effect of several polyamines that are abundant in the human intestine on V. cholerae virulence properties. All of the polyamines tested inhibited autoagglutination of V. cholerae O1 classical strain in a concentration dependent manner. Putrescine and cadaverine decreased the synthesis of the major pilin subunit, TcpA, spermidine increased its production, and spermine had no effect. Putrescine and spermidine led to a decrease and increase, respectively, on the relative abundance of TCP found on the cell surface. Spermine led to a small reduction in cholera toxin synthesis whereas none of the other polyamines had an effect. The polyamines did not affect pili bundling morphology, but caused a small reduction in CTXφ transduction, indicating that the TCP present on the cell surface may not be fully functional. We hypothesize the inhibition of autoagglutination is likely to be caused by the positively charged amine groups on the polyamines electrostatically disrupting the pili-pili interactions which mediate autoagglutination. Our results implicate that polyamines may have a protective function against colonization of the small intestine by V. cholerae.


Asunto(s)
Poliaminas/farmacología , Vibrio cholerae/efectos de los fármacos , Virulencia , Aglutinación , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Vibrio cholerae/patogenicidad
7.
FEMS Microbiol Lett ; 329(1): 18-27, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22239666

RESUMEN

Biofilm formation in Vibrio cholerae is in part regulated by norspermidine, a polyamine synthesized by the enzyme carboxynorspermidine decarboxylase (NspC). The absence of norspermidine in the cell leads to a marked reduction in V. cholerae biofilm formation by an unknown mechanism. In this work, we show that overexpression of nspC results in large increases in biofilm formation and vps gene expression as well as a significant decrease in motility. Interestingly, increased NspC levels do not lead to increased concentrations of norspermidine in the cell. Our results show that NspC levels inversely regulate biofilm and motility and implicate the presence of an effective feedback mechanism maintaining norspermidine homeostasis in V. cholerae. Moreover, we provide evidence that NspC and the norspermidine sensor protein, NspS, provide independent and distinct inputs into the biofilm regulatory network.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Espermidina/análogos & derivados , Vibrio cholerae/fisiología , Humanos , Locomoción , Espermidina/biosíntesis , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo
8.
FEMS Microbiol Lett ; 299(2): 166-74, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19694812

RESUMEN

Vibrio cholerae, the causative agent of the devastating diarrheal disease cholera, can form biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these signals, norspermidine, is a polyamine that enhances biofilm formation via the NspS/MbaA signaling system. In this work, we have investigated the role of the polyamine spermidine in regulating biofilm formation in V. cholerae. We show that spermidine import requires PotD1, an ortholog of the periplasmic substrate-binding protein of the spermidine transport system in Escherichia coli. We also show that deletion of the potD1 gene results in a significant increase in biofilm formation. We hypothesize that spermidine imported into the cell hinders biofilm formation. Exogenous spermidine further reduces biofilm formation in a PotD1-independent, but NspS/MbaA-dependent, manner. Our results suggest that polyamines affect biofilm formation in V. cholerae via multiple pathways involving both transport and signaling networks.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Transducción de Señal , Espermidina/metabolismo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Eliminación de Gen , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
9.
Microbiol Mol Biol Rev ; 73(2): 310-47, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19487730

RESUMEN

Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.


Asunto(s)
Bacterias/metabolismo , Biopelículas , Transducción de Señal/fisiología , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Adhesión Bacteriana , Fenómenos Fisiológicos Bacterianos , Ambiente , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Mamíferos/microbiología , Transcripción Genética
10.
J Bacteriol ; 187(21): 7434-43, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16237027

RESUMEN

Vibrio cholerae is both an environmental bacterium and a human intestinal pathogen. The attachment of bacteria to surfaces in biofilms is thought to be an important feature of the survival of this bacterium both in the environment and within the human host. Biofilm formation occurs when cell-surface and cell-cell contacts are formed to make a three-dimensional structure characterized by pillars of bacteria interspersed with water channels. In monosaccharide-rich conditions, the formation of the V. cholerae biofilm requires synthesis of the VPS exopolysaccharide. MbaA (locus VC0703), an integral membrane protein containing a periplasmic domain as well as cytoplasmic GGDEF and EAL domains, has been previously identified as a repressor of V. cholerae biofilm formation. In this work, we have studied the role of the protein NspS (locus VC0704) in V. cholerae biofilm development. This protein is homologous to PotD, a periplasmic spermidine-binding protein of Escherichia coli. We show that the deletion of nspS decreases biofilm development and transcription of exopolysaccharide synthesis genes. Furthermore, we demonstrate that the polyamine norspermidine activates V. cholerae biofilm formation in an MbaA- and NspS-dependent manner. Based on these results, we propose that the interaction of the norspermidine-NspS complex with the periplasmic portion of MbaA diminishes the ability of MbaA to inhibit V. cholerae biofilm formation. Norspermidine has been detected in bacteria, archaea, plants, and bivalves. We suggest that norspermidine serves as an intercellular signaling molecule that mediates the attachment of V. cholerae to the biotic surfaces presented by one or more of these organisms.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas de Transporte de Membrana/fisiología , Espermidina/análogos & derivados , Vibrio cholerae/fisiología , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Genes Reporteros , Sustancias de Crecimiento/farmacología , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas/genética , Polisacáridos Bacterianos/biosíntesis , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Transducción de Señal/fisiología , Espermidina/farmacología , Espermidina/fisiología , Transcripción Genética , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
12.
Appl Environ Microbiol ; 71(7): 3840-7, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16000796

RESUMEN

Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.


Asunto(s)
Adaptación Fisiológica , Betaína/metabolismo , Biopelículas/crecimiento & desarrollo , Ecosistema , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Humanos , Concentración Osmolar , Agua de Mar/microbiología , Vibrio cholerae/metabolismo
13.
Anal Chem ; 76(19): 5713-20, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15456290

RESUMEN

Antibody arrays hold considerable potential in a variety of applications including proteomics research, drug discovery, and diagnostics. Many of the schemes used to fabricate the arrays fail to immobilize the antibodies at a uniform density or in a single orientation; consequently, the immobilized antibodies recognize their antigens with variable efficiency. This paper describes a strategy to immobilize antibodies in a single orientation, with a controlled density, using the covalent interaction between cutinase and its suicide substrate. Protein fusions between cutinase and five antibodies of three different types (scFv, V(HH), and FN3) were prepared and immobilized upon self-assembled monolayers (SAMs) presenting a phosphonate capture ligand. The immobilized antibodies exhibit high affinity and selectivity for their target antigens, as monitored by surface plasmon resonance and fluorescence scanning. Furthermore, by changing the density of capture ligand on the SAM the density of the immobilized antibody could be controlled. The monolayers, which also present a tri(ethylene glycol) group, are inert to nonspecific adsorption of proteins and allow the detection of a specific antigen in a complex mixture. The demonstration of cutinase-directed antibody immobilization with insert SAMs provides a straightforward and robust method for preparing antibody chips.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Enzimas Inmovilizadas/metabolismo , Análisis por Matrices de Proteínas/métodos , Anticuerpos/genética , Hidrolasas de Éster Carboxílico/genética , Clonación Molecular , Enzimas Inmovilizadas/genética , Escherichia coli/metabolismo , Expresión Génica , Ligandos , Muramidasa/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Resonancia por Plasmón de Superficie
14.
Chem Biol ; 11(6): 835-44, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15217616

RESUMEN

We have constructed a phage-displayed library based on the human fibronectin tenth type III domain (FN3) scaffold by randomizing residues in its FG and BC loops. Screening against the SH3 domain of human c-Src yielded six different clones. Five of these contained proline-rich sequences in their FG loop that resembled class I (i.e., +xxPxxP) peptide ligands for the Src SH3 domain. The sixth clone lacked the proline-rich sequence and showed particularly high binding specificity to the Src SH3 domain among various SH3 domains tested. Competitive binding, loop replacement, and NMR perturbation experiments were conducted to analyze the recognition properties of selected binders. The strongest binder was able to pull down full-length c-Src from murine fibroblast cell extracts, further demonstrating the potential of this scaffold for use as an antibody mimetic.


Asunto(s)
Péptidos/química , Fosfotransferasas/química , Proteínas Proto-Oncogénicas/química , Dominios Homologos src/fisiología , Animales , Sitios de Unión , Unión Competitiva , Proteína Tirosina Quinasa CSK , Células Clonales , Fibronectinas/química , Humanos , Ligandos , Ratones , Modelos Moleculares , Imitación Molecular/fisiología , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/metabolismo , Fosfotransferasas/metabolismo , Prolina/química , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Familia-src Quinasas
15.
Microbiology (Reading) ; 150(Pt 3): 581-589, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993307

RESUMEN

Bacillus subtilis has a more complex mechanism of chemotaxis than does the paradigm organism, Escherichia coli. In order to understand better the role of the novel chemotaxis proteins--CheC, CheD and CheV--mutants in which increasing numbers of the corresponding genes had been deleted were studied as tethered cells and their biases and sometimes durations of counterclockwise (CCW) and clockwise (CW) flagellar rotations in response to addition and removal of the attractant asparagine were observed. The cheC mutant was found to have considerably reduced switching frequency (that is, prolonged CCW and CW rotations) without a significantly different prestimulus CCW bias, compared with wild-type. This result may indicate that in absence of CheC the switch might be in a conformation less resembling the transition state than in presence of CheC. Conversely, the cheB (methylesterase) mutant showed considerably increased switching frequency without affecting CCW bias, compared with wild-type. Removal of all known adaptation systems--the methylation, CheC and CheV systems--resulted in a mutant (cheRBCDV) that still retained some adaptation following the addition of attractant.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Quimiotaxis/genética , Quimiotaxis/fisiología , Factores Quimiotácticos/genética , Factores Quimiotácticos/fisiología , Eliminación de Gen , Genes Bacterianos , Modelos Biológicos , Mutación
16.
Comb Chem High Throughput Screen ; 7(1): 55-62, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14965261

RESUMEN

When using multiple targets and libraries, selection of affinity reagents from phage-displayed libraries is a relatively time-consuming process. Herein, we describe an automation-amenable approach to accelerate the process by using alkaline phosphatase (AP) fusion proteins in place of the phage ELISA screening and subsequent confirmation steps with purified protein. After two or three rounds of affinity selection, the open reading frames that encode the affinity selected molecules (i.e., antibody fragments, engineered scaffold proteins, combinatorial peptides) are amplified from the phage or phagemid DNA molecules by PCR and cloned en masse by a Ligation Independent Cloning (LIC) method into a plasmid encoding a highly active variant of E. coli AP. This time-saving process identifies affinity reagents that work out of context of the phage and that can be used in various downstream enzyme linked binding assays. The utility of this approach was demonstrated by analyzing single-chain antibodies (scFvs), engineered fibronectin type III domains (FN3), and combinatorial peptides that were selected for binding to the Epsin N-terminal Homology (ENTH) domain of epsin 1, the c-Src SH3 domain, and the appendage domain of the gamma subunit of the clathrin adaptor complex, AP-1, respectively.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Técnicas Químicas Combinatorias/métodos , Biblioteca de Péptidos , Fosfatasa Alcalina/química , Fosfatasa Alcalina/genética , Escherichia coli/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...