Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984987

RESUMEN

Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.


Asunto(s)
Mitocondrias , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Mitocondrias/metabolismo , Fosforilación , Espectrometría de Masas , Proteínas Mitocondriales/metabolismo
2.
Mol Cell ; 84(2): 293-308.e14, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113892

RESUMEN

Ubiquitylation is catalyzed by coordinated actions of E3 and E2 enzymes. Molecular principles governing many important E3-E2 partnerships remain unknown, including those for RING-family GID/CTLH E3 ubiquitin ligases and their dedicated E2, Ubc8/UBE2H (yeast/human nomenclature). GID/CTLH-Ubc8/UBE2H-mediated ubiquitylation regulates biological processes ranging from yeast metabolic signaling to human development. Here, cryoelectron microscopy (cryo-EM), biochemistry, and cell biology reveal this exquisitely specific E3-E2 pairing through an unconventional catalytic assembly and auxiliary interactions 70-100 Å away, mediated by E2 multisite phosphorylation. Rather than dynamic polyelectrostatic interactions reported for other ubiquitylation complexes, multiple Ubc8/UBE2H phosphorylation sites within acidic CK2-targeted sequences specifically anchor the E2 C termini to E3 basic patches. Positions of phospho-dependent interactions relative to the catalytic domains correlate across evolution. Overall, our data show that phosphorylation-dependent multivalency establishes a specific E3-E2 partnership, is antagonistic with dephosphorylation, rigidifies the catalytic centers within a flexing GID E3-substrate assembly, and facilitates substrate collision with ubiquitylation active sites.


Asunto(s)
Saccharomyces cerevisiae , Enzimas Ubiquitina-Conjugadoras , Humanos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilación , Microscopía por Crioelectrón , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Nat Commun ; 14(1): 7674, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996418

RESUMEN

Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Células-Madre Neurales/metabolismo , Estudios de Seguimiento , Neuronas Dopaminérgicas/metabolismo , Progresión de la Enfermedad
4.
EMBO Mol Med ; 15(9): e17459, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37519267

RESUMEN

SARS-CoV-2 may directly and indirectly damage lung tissue and other host organs, but there are few system-wide, untargeted studies of these effects on the human body. Here, we developed a parallelized mass spectrometry (MS) proteomics workflow enabling the rapid, quantitative analysis of hundreds of virus-infected FFPE tissues. The first layer of response to SARS-CoV-2 in all tissues was dominated by circulating inflammatory molecules. Beyond systemic inflammation, we differentiated between systemic and true tissue-specific effects to reflect distinct COVID-19-associated damage patterns. Proteomic changes in the lungs resembled those of diffuse alveolar damage (DAD) in non-COVID-19 patients. Extensive organ-specific changes were also evident in the kidneys, liver, and lymphatic and vascular systems. Secondary inflammatory effects in the brain were related to rearrangements in neurotransmitter receptors and myelin degradation. These MS-proteomics-derived results contribute substantially to our understanding of COVID-19 pathomechanisms and suggest strategies for organ-specific therapeutic interventions.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Proteómica , Inflamación , Pulmón
5.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747789

RESUMEN

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comßVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.

6.
Elife ; 112022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459484

RESUMEN

The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.


Asunto(s)
Eritropoyesis , Proteómica , Humanos , Eritrocitos , Proteoma , Ubiquitina , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Asociadas a Microtúbulos , Factores de Intercambio de Guanina Nucleótido
7.
Neoplasia ; 33: 100836, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36095928

RESUMEN

Breast cancer is a highly heterogeneous disease both at the histological and molecular levels. We have previously shown that RANK-c is a regulator of NF-κB signaling and exerts a suppressive effect on aggressive properties of ER negative breast cancer cells, while there is an opposite effect on ER positive cell lines. In order to identify molecular determinants that govern the opposing function of RANK-c in breast cancer cells we employed the two cell lines with the highest degree of phenotypic divergence upon RANK-c-expression (SKBR3 and BT474) and identified proteins that interact with RANK-c by affinity-enrichment mass spectrometry (AE-MS) analysis. Annotating enriched proteins with NF-κB signaling pathway revealed TRAF3 as an interacting partner of RANK-c in SKBR3 cell protein lysates, but not in BT474 breast cancer cells in which RANK-c induces cell aggressiveness. To determine the role of TRAF3 in the phenotype of BT474-RANK-c cells, we reconstructed the TRAF3/RANK-c interaction both in parental BT474 and RANK-c expressing cells and tested for aggressive properties through colony formation, migration and invasion assays. TRAF3 forced expression was able to reverse BT474 phenotypic changes imposed by RANK-c, rendering cells less aggressive. Finally, TRAF3 gene expression data and TRAF3 immunohistochemical (IHC) analysis on breast cancer samples indicated that TRAF3 expression correlates with Overall Survival (OS), Recurrence Free Survival (RFS) and several clinicopathological parameters (histological grade, proliferation index) of breast cancer disease.


Asunto(s)
Neoplasias , Factor 3 Asociado a Receptor de TNF , Línea Celular Tumoral , FN-kappa B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/farmacología , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/farmacología
8.
Mol Cell Proteomics ; 21(9): 100279, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944843

RESUMEN

Data-independent acquisition (DIA) methods have become increasingly attractive in mass spectrometry-based proteomics because they enable high data completeness and a wide dynamic range. Recently, we combined DIA with parallel accumulation-serial fragmentation (dia-PASEF) on a Bruker trapped ion mobility (IM) separated quadrupole time-of-flight mass spectrometer. This requires alignment of the IM separation with the downstream mass selective quadrupole, leading to a more complex scheme for dia-PASEF window placement compared with DIA. To achieve high data completeness and deep proteome coverage, here we employ variable isolation windows that are placed optimally depending on precursor density in the m/z and IM plane. This is implemented in the freely available py_diAID (Python package for DIA with an automated isolation design) package. In combination with in-depth project-specific proteomics libraries and the Evosep liquid chromatography system, we reproducibly identified over 7700 proteins in a human cancer cell line in 44 min with quadruplicate single-shot injections at high sensitivity. Even at a throughput of 100 samples per day (11 min liquid chromatography gradients), we consistently quantified more than 6000 proteins in mammalian cell lysates by injecting four replicates. We found that optimal dia-PASEF window placement facilitates in-depth phosphoproteomics with very high sensitivity, quantifying more than 35,000 phosphosites in a human cancer cell line stimulated with an epidermal growth factor in triplicate 21 min runs. This covers a substantial part of the regulated phosphoproteome with high sensitivity, opening up for extensive systems-biological studies.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Factor de Crecimiento Epidérmico , Humanos , Mamíferos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
9.
Cell Chem Biol ; 29(8): 1273-1287.e8, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35839780

RESUMEN

Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for ß-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.


Asunto(s)
Proteínas Nucleares , Proteoma , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
10.
Nat Commun ; 13(1): 3041, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650207

RESUMEN

Protein degradation, a major eukaryotic response to cellular signals, is subject to numerous layers of regulation. In yeast, the evolutionarily conserved GID E3 ligase mediates glucose-induced degradation of fructose-1,6-bisphosphatase (Fbp1), malate dehydrogenase (Mdh2), and other gluconeogenic enzymes. "GID" is a collection of E3 ligase complexes; a core scaffold, RING-type catalytic core, and a supramolecular assembly module together with interchangeable substrate receptors select targets for ubiquitylation. However, knowledge of additional cellular factors directly regulating GID-type E3s remains rudimentary. Here, we structurally and biochemically characterize Gid12 as a modulator of the GID E3 ligase complex. Our collection of cryo-EM reconstructions shows that Gid12 forms an extensive interface sealing the substrate receptor Gid4 onto the scaffold, and remodeling the degron binding site. Gid12 also sterically blocks a recruited Fbp1 or Mdh2 from the ubiquitylation active sites. Our analysis of the role of Gid12 establishes principles that may more generally underlie E3 ligase regulation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Microscopía por Crioelectrón , Gluconeogénesis/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Cell Rep Med ; 3(6): 100661, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732154

RESUMEN

Parkinson's disease (PD) is a growing burden worldwide, and there is no reliable biomarker used in clinical routines to date. Cerebrospinal fluid (CSF) is routinely collected in patients with neurological symptoms and should closely reflect alterations in PD patients' brains. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomics workflow for CSF proteome profiling. From two independent cohorts with over 200 individuals, our workflow reproducibly quantifies over 1,700 proteins from minimal CSF amounts. Machine learning determines OMD, CD44, VGF, PRL, and MAN2B1 to be altered in PD patients or to significantly correlate with clinical scores. We also uncover signatures of enhanced neuroinflammation in LRRK2 G2019S carriers, as indicated by increased levels of CTSS, PLD4, and HLA proteins. A comparison with our previously acquired urinary proteomes reveals a large overlap in PD-associated changes, including lysosomal proteins, opening up new avenues to improve our understanding of PD pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores/líquido cefalorraquídeo , Heterocigoto , Humanos , Enfermedad de Parkinson/diagnóstico , Proteoma/metabolismo , Proteómica/métodos
12.
PLoS Biol ; 20(5): e3001636, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576205

RESUMEN

The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Humanos , Espectrometría de Masas/métodos , Fosforilación , Proteómica/métodos
13.
EMBO Rep ; 23(6): e53835, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35437932

RESUMEN

Cells rapidly remodel their proteomes to align their cellular metabolism to environmental conditions. Ubiquitin E3 ligases enable this response, by facilitating rapid and reversible changes to protein stability, localization, or interaction partners. In Saccharomyces cerevisiae, the GID E3 ligase regulates the switch from gluconeogenic to glycolytic conditions through induction and incorporation of the substrate receptor subunit Gid4, which promotes the degradation of gluconeogenic enzymes. Here, we show an alternative substrate receptor, Gid10, which is induced in response to changes in temperature, osmolarity, and nutrient availability, regulates the ART-Rsp5 ubiquitin ligase pathway, a component of plasma membrane quality control. Proteomic studies reveal that the levels of the adaptor protein Art2 are elevated upon GID10 deletion. A crystal structure shows the basis for Gid10-Art2 interactions, and we demonstrate that Gid10 directs a GID E3 ligase complex to ubiquitinate Art2. Our data suggest that the GID E3 ligase affects Art2-dependent amino acid transport. This study reveals GID as a system of E3 ligases with metabolic regulatory functions outside of glycolysis and gluconeogenesis, controlled by distinct stress-specific substrate receptors.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejos de Ubiquitina-Proteína Ligasa , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Proteomics ; 22(15-16): e2200074, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35353442

RESUMEN

The ubiquitin-proteasome system (UPS) was discovered about 40 years ago and is known to regulate a multitude of cellular processes including protein homeostasis. Ubiquitylated proteins are recognized by downstream effectors, resulting in alterations of protein abundance, activity, or localization. Not surprisingly, the ubiquitylation machinery is dysregulated in numerous diseases, including cancers and neurodegeneration. Mass spectrometry (MS)-based proteomics has emerged as a transformative technology for characterizing protein ubiquitylation in an unbiased fashion. Here, we provide an overview of the different MS-based approaches for studying protein ubiquitylation. We review various methods for enriching and quantifying ubiquitin modifications at the peptide or protein level, outline MS acquisition, and data processing approaches and discuss key challenges. Finally, we examine how MS-based ubiquitinomics can aid both basic biology and drug discovery research.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Descubrimiento de Drogas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Ubiquitina/metabolismo , Ubiquitinación
15.
Sci Signal ; 15(723): eabk3083, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35230873

RESUMEN

CARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/ß-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/ß-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser893 in the carboxyl terminus of CARD11 prevented the activation of the transcription factor NF-κB, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser893 phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser893 in CARD11 by PKCθ controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCθ simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Serina , Proteína 10 de la LLC-Linfoma de Células B/genética , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Linfocitos B/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación
16.
Cell Mol Life Sci ; 79(2): 112, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099607

RESUMEN

T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Linfocitos T/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/fisiología , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Células Cultivadas , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Interferencia de ARN/inmunología , Transducción de Señal/fisiología , Linfocitos T/inmunología
17.
Nature ; 594(7862): 246-252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845483

RESUMEN

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Proteómica , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , COVID-19/inmunología , COVID-19/virología , Línea Celular , Conjuntos de Datos como Asunto , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fosforilación , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteoma/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Viroporinas/metabolismo
18.
Mol Cell ; 81(11): 2445-2459.e13, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905682

RESUMEN

How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GIDSR4, which resembles an organometallic supramolecular chelate. The Chelator-GIDSR4 assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites. Importantly, key structural and biochemical features, including capacity for supramolecular assembly, are preserved in the human ortholog, the CTLH E3. Based on our integrative structural, biochemical, and cell biological data, we propose that higher-order E3 ligase assembly generally enables multipronged targeting, capable of simultaneously incapacitating multiple protomers and functionalities of oligomeric substrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Moléculas de Adhesión Celular/química , Fructosa-Bifosfatasa/química , Péptidos y Proteínas de Señalización Intracelular/química , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Microscopía por Crioelectrón , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Expresión Génica , Gluconeogénesis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células K562 , Cinética , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
19.
Nat Commun ; 12(1): 254, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431886

RESUMEN

Protein ubiquitination is involved in virtually all cellular processes. Enrichment strategies employing antibodies targeting ubiquitin-derived diGly remnants combined with mass spectrometry (MS) have enabled investigations of ubiquitin signaling at a large scale. However, so far the power of data independent acquisition (DIA) with regards to sensitivity in single run analysis and data completeness have not yet been explored. Here, we develop a sensitive workflow combining diGly antibody-based enrichment and optimized Orbitrap-based DIA with comprehensive spectral libraries together containing more than 90,000 diGly peptides. This approach identifies 35,000 diGly peptides in single measurements of proteasome inhibitor-treated cells - double the number and quantitative accuracy of data dependent acquisition. Applied to TNF signaling, the workflow comprehensively captures known sites while adding many novel ones. An in-depth, systems-wide investigation of ubiquitination across the circadian cycle uncovers hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within individual membrane protein receptors and transporters, highlighting new connections between metabolism and circadian regulation.


Asunto(s)
Ritmo Circadiano/fisiología , Proteoma/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Biblioteca de Péptidos , Proteómica , Reproducibilidad de los Resultados , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitinación
20.
EMBO Mol Med ; 13(3): e13257, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33481347

RESUMEN

The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.


Asunto(s)
Enfermedad de Parkinson , Proteoma , Heterocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...