Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132990

RESUMEN

Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO's intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials' inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films' photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir-Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO's work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV-a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO's pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839052

RESUMEN

Rare-earth oxyhydride (ReOxHy) films are novel inorganic photochromic materials that have strong potential for applications in windows and optical sensors. Cations greatly influence many material properties and play an important role in the photochromic performance of ReOxHy. Here we propose a strategy for obtaining Gd1-zYzOxHy films (z = 1, 0.7, 0.5, 0.4, 0.35, 0.25, 0.15, 0) using one-step direct-current (DC) magnetron co-sputtering. Distinct from the mixed anion systems, such material would belong to the class of mixed anion and mixed cation materials. For Gd1-zYzOxHy films, different co-doping ratios can help tune the contrast ratio (that is, the difference between coloration and bleaching transmittance) and cycling degradation, which may be related to the lattice constant. X-ray diffraction (XRD) patterns show that the lattice constant increases from 5.38 Å for YOxHy to 5.51 Å, corresponding to Gd0.75Y0.25OxHy. The contrast ratio, in particular, can be enhanced to 37% from 6.3% by increasing the lattice constant, directly controlled by the co-sputtering power. When the lattice constant decreases, the surface morphology of the sample with the smallest lattice constant is essentially unchanged by testing in air with normal oxidation for 100 days, suggesting great improvement in environment durability. However, the crystal structure cannot be overly compressed, and co-sputtering with Cr gives black opaque films without photochromic properties. Moreover, because the atomic mass of different rare earth elements is different, the critical pressure p* (films deposited at p < p* remain metallic dihydrides) is different, and the preparation window is enlarged. Our work provides insights into innovative photochromic materials that can help to achieve commercial production and application.

3.
Biofouling ; 38(9): 865-875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36345787

RESUMEN

The resistance of surfaces to biofouling remains a significant advantage for optical devices working in natural conditions, increasing their lifetime and reducing maintenance costs. This paper reports on the functionalities of transparent CeO2 thin films with thicknesses between 25 and 600 nm deposited by reactive magnetron sputtering on the glass substrate. The CeO2 photocatalytic performance exhibited an efficiency of 30% on imidacloprid degradation under 6 h of UV radiation and increased linearly with the irradiation time, suggesting a complete degradation within 48 h. The films did not alter the growth rate of the green algae Chlorella vulgaris after 72 h short-term exposure. The tested CeO2 films proved to efficiently inhibit with high efficiency the Staphylococcus aureus biofilms and planktonic growth (reducing the counts of bacterial cells by 2 to 8 logs), demonstrating the promising potential of these materials for obtaining antimicrobial and antibiofilm surfaces, with broad applications for the biomedical, ecological and industrial fields.


Asunto(s)
Cerio , Chlorella vulgaris , Biopelículas , Cerio/farmacología , Cerio/química , Staphylococcus aureus
4.
Nanomaterials (Basel) ; 11(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379229

RESUMEN

The fabrication of cost-effective photostable materials with optoelectronic properties suitable for commercial photoelectrochemical (PEC) water splitting represents a complex task. Herein, we present a simple route to produce Sb2Se3 that meets most of the requirements for high-performance photocathodes. Annealing of Sb2Se3 layers in a selenium-containing atmosphere persists as a necessary step for improving device parameters; however, it could complicate industrial processability. To develop a safe and scalable alternative to the selenium physical post-processing, we propose a novel SbCl3/glycerol-based thermochemical treatment for controlling anisotropy, a severe problem for Sb2Se3. Our procedure makes it possible to selectively etch antimony-rich oxyselenide presented in Sb2Se3, to obtain high-quality compact thin films with a favorable morphology, stoichiometric composition, and crystallographic orientation. The treated Sb2Se3 photoelectrode demonstrates a record photocurrent density of about 31 mA cm-2 at -248 mV against the calomel electrode and can thus offer a breakthrough option for industrial solar fuel fabrication.

5.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041230

RESUMEN

In this work, layered hybrid composites formed by tin oxide (SnO) nanoparticles synthesized by hydrolysis and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) have been analyzed. Prior to the composite study, both SnO and PEDOT:PSS counterparts were characterized by diverse techniques, such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), photoluminescence (PL), atomic force microscopy (AFM), optical absorption and Hall effect measurements. Special attention was given to the study of the stability of the polymer under laser illumination, as well as the analysis of the SnO to SnO2 oxidation assisted by laser irradiation, for which different laser sources and neutral filters were employed. Synergetic effects were observed in the hybrid composite, as the addition of SnO nanoparticles improves the stability and electrical conductivity of the polymer, while the polymeric matrix in which the nanoparticles are embedded hinders formation of SnO2. Finally, the Si passivation behavior of the hybrid composites was studied.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Nanopartículas/química , Polímeros/química , Poliestirenos/química , Compuestos de Estaño/química , Conductividad Eléctrica , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/métodos
6.
Sci Rep ; 8(1): 8740, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880895

RESUMEN

The effects of Cr on local environment and electronic structure of rutile TiO2 are studied combining theoretical and experimental approaches. Neutral and negatively charged substitutional Cr impurities CrTi0 and CrTi1- as well as Cr-oxygen vacancy complex 2CrTi + VO are studied by the density functional theory (DFT) within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functional. Experimental results based on X-Ray absorption spectroscopy (XAS) and X-Ray photoelectron spectroscopy (XPS) performed on Cr doped TiO2 at the Synchrotron facility were compared to the theoretical results. It is shown that the electrons of the oxygen vacancy tend to be localized at the t2g states of the Cr ions in order to reach the stable oxidation state of Cr3+. Effects of Cr on crystal field (CF) and structural distortions in the rutile TiO2 cell were analyzed by the DFT calculations and XAS spectra revealing that the CF and tetragonal distortions in TiO2 are very sensitive to the concentration of Cr.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...