Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(12): 110143, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34919799

RESUMEN

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

2.
Expert Rev Vaccines ; 20(8): 935-944, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184607

RESUMEN

Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Vacunas , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Humanos , Desarrollo de Vacunas
3.
Nanomedicine (Lond) ; 16(8): 673-680, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715403

RESUMEN

An efficacious HIV-1 vaccine has remained an elusive target for almost 40 years. The sheer diversity of the virus is one of the major roadblocks for vaccine development. HIV-1 frequently mutates and various strains predominate in different geographic regions, making the development of a globally applicable vaccine extremely difficult. Multiple approaches have been taken to overcome the issue of viral diversity, including sequence optimization, development of consensus and mosaic sequences and the use of different prime-boost approaches. To develop an efficacious vaccine, these approaches may need to be combined. One way to potentially synergize these approaches is to use a rationally designed protein nanoparticle that allows for the native-like presentation of antigens, such as the self-assembling protein nanoparticle.


Asunto(s)
VIH-1 , Nanopartículas , Vacunas contra el SIDA , VIH-1/inmunología , Tecnología , Vacunas de ADN
4.
Sci Rep ; 10(1): 16984, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046728

RESUMEN

Fighting smart diseases requires smart vaccines. Novel ways to present protective immunogenic peptide epitopes to human immune systems are needed. Herein, we focus on Self Assembling Protein Nanoparticles (SAPNs) as scaffolds/platforms for vaccine delivery that produce strong immune responses against Toxoplasma gondii in HLA supermotif, transgenic mice. Herein, we present a useful platform to present peptides that elicit CD4+, CD8+ T and B cell immune responses in a core architecture, formed by flagellin, administered in combination with TLR4 ligand-emulsion (GLA-SE) adjuvant. We demonstrate protection of HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02 mice against toxoplasmosis by (i) this novel chimeric polypeptide, containing epitopes that elicit CD8+ T cells, CD4+ T helper cells, and IgG2b antibodies, and (ii) adjuvant activation of innate immune TLR4 and TLR5 pathways. HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02q11 transgenic mouse splenocytes with peptides demonstrated predicted genetic restrictions. This creates a new paradigm-shifting vaccine approach to prevent toxoplasmosis, extendable to other diseases.


Asunto(s)
Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Toxoplasma/fisiología , Toxoplasmosis/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos de Protozoos/química , Células Cultivadas , Epítopos/química , Antígeno HLA-A11/metabolismo , Antígeno HLA-A2/metabolismo , Antígeno HLA-B7/metabolismo , Humanos , Inmunoglobulina G/sangre , Activación de Linfocitos , Ratones , Ratones Transgénicos , Nanopartículas/química , Ingeniería de Proteínas
5.
Nanomedicine ; 29: 102255, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32615339

RESUMEN

The V1V2 loop of the Env protein is a major target for HIV-1 vaccine development because in multiple studies antibodies to this region correlated with protection. Although SAPNs expressed in E. coli elicited anti-V1V2 antibodies, the Env protein is heavily glycosylated. In this study the technology has been adapted for expression in mammalian cells. SAPNs containing a V1V2 loop from a B-subtype transmitter/founder virus were expressed in E. coli, ExpiCHO, and Expi293 cells. Independent of the expression host, particles were well-formed. All SAPNs raised high titers of V1V2-specific antibodies, however, SAPNE.coli induced a mainly anti-V1 response, while SAPNExpiCHO and SAPNExpi293 induced a predominantly anti-V2 response. In an ADCP assay, sera from animals immunized with the SAPNExpiCHO or SAPNExpi293 induced a significant increase in phagocytic activity. This novel way of producing SAPNs displaying glycosylated epitopes could increase the antibody titer, functional activity, and shift the immune response towards the desired pathway.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Inmunidad/genética , Nanopartículas/química , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , Epítopos/efectos de los fármacos , Epítopos/inmunología , Escherichia coli/genética , Productos del Gen env/genética , Productos del Gen env/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Inmunidad/inmunología , Inmunización
6.
J Vis Exp ; (150)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31498330

RESUMEN

Self-assembling protein nanoparticles (SAPNs) function as repetitive antigen displays and can be used to develop a wide range of vaccines for different infectious diseases. In this article we demonstrate a method to produce a SAPN core containing a six-helix bundle (SHB) assembly that is capable of presenting antigens in a trimeric conformation. We describe the expression of the SHB-SAPN in an E. coli system, as well as the necessary protein purification steps. We included an isopropanol wash step to reduce the residual bacterial lipopolysaccharide. As an indication of the protein identity and purity, the protein reacted with known monoclonal antibodies in Western blot analyses. After refolding, the size of the particles fell in the expected range (20 to 100 nm), which was confirmed by dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy. The methodology described here is optimized for the SHB-SAPN, however, with only slight modifications it can be applied to other SAPN constructs. This method is also easily transferable to large scale production for GMP manufacturing for human vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Presentación de Antígeno/inmunología , Epítopos/inmunología , Escherichia coli/metabolismo , Nanopartículas/química , Proteínas/inmunología , Vacunas/inmunología , Epítopos/química , Humanos , Microscopía Electrónica de Transmisión , Pliegue de Proteína , Proteínas/metabolismo
8.
Nanomedicine ; 16: 206-216, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576800

RESUMEN

The RV144 HIV-1 clinical trial demonstrated modest vaccine efficacy and identified IgG antibodies against the Env V1V2 loop that inversely correlated with risk of infection. Based upon these results, we chose the Self-Assembling Protein Nanoparticle platform to present the V1V2 loop in a native-like conformation. We hypothesized this approach would lead to generation of conformation-specific IgG antibodies to V1V2. Our vaccine, V1V2-SHB-SAPN, was designed to present twenty copies of the V1V2 trimer. Particles were characterized for size, shape, and binding to monoclonal antibodies that recognize the V2 and V1V2 loops. Immunization induced IgG antibodies to V1, V2, V1V2 and to gp70V1V2 (AE/A244) capture antigens in mice. The presence of the Army Liposome Formulation induced a four-fold increase in IgG titers to gp70V1V2 and the adjuvanted V1V2-SHB-SAPN group had statistically higher IgG titers than sequence- and dose-matched V1V2 peptide controls. In conclusion, V1V2-SHB-SAPN vaccine presented the V1V2 loop in native-like conformation, as indicated by PGT145 binding, and induced high titers of IgG antibodies.


Asunto(s)
Productos del Gen env/química , Nanopartículas/química , Nanotecnología/métodos , Vacunas Virales/química , Vacunas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Humanos
10.
PLoS One ; 13(9): e0203771, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30216376

RESUMEN

Infectious bronchitis virus (IBV) affects poultry respiratory, renal and reproductive systems. Currently the efficacy of available live attenuated or killed vaccines against IBV has been challenged. We designed a novel IBV vaccine alternative using a highly innovative platform called Self-Assembling Protein Nanoparticle (SAPN). In this vaccine, B cell epitopes derived from the second heptad repeat (HR2) region of IBV spike proteins were repetitively presented in its native trimeric conformation. In addition, flagellin was co-displayed in the SAPN to achieve a self-adjuvanted effect. Three groups of chickens were immunized at four weeks of age with the vaccine prototype, IBV-Flagellin-SAPN, a negative-control construct Flagellin-SAPN or a buffer control. The immunized chickens were challenged with 5x10(4.7) EID50 IBV M41 strain. High antibody responses were detected in chickens immunized with IBV-Flagellin-SAPN. In ex vivo proliferation tests, peripheral mononuclear cells (PBMCs) derived from IBV-Flagellin-SAPN immunized chickens had a significantly higher stimulation index than that of PBMCs from chickens receiving Flagellin-SAPN. Chickens immunized with IBV-Flagellin-SAPN had a significant reduction of tracheal virus shedding and lesser tracheal lesion scores than did negative control chickens. The data demonstrated that the IBV-Flagellin-SAPN holds promise as a vaccine for IBV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Nanopartículas , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/uso terapéutico , Animales , Pollos , Infecciones por Coronavirus/inmunología , Enfermedades de las Aves de Corral/inmunología , Vacunas Virales/química
11.
Vaccine ; 36(6): 906-914, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269157

RESUMEN

To eliminate the problems associated with the use of extraneous adjuvants we have designed a Self-Assembling Protein Nanoparticle (SAPN) containing epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) (designated FMP014) and portions of the TLR5 agonist flagellin (designated FMP014D0D1) as an intrinsic adjuvant. By combining different molar ratios of FMP014 to FMP014D0D1 monomers before self-assembly, we generated multiple nanoparticles and investigated their biophysical characteristics, immunogenicity and protective efficacy. Immunization with the construct formulated with the ratio 58:2 of FMP014 to FMP014D0D1 had the highest protective efficacy against a challenge with a transgenic P. berghei sporozoite expressing PfCSP. Increasing the proportion of flagellin per particle resulted in an inverse relationship with levels of both antibody titers and protection. The cytokine profiles of the various immunization groups were evaluated and quantitative amounts of the cytokines IL-2, IFN-γ, IL-12/p70 (Th1); IL4, IL5 (Th2); TNF-α, IL1ß, IL-6, KC/GRO (pro-inflammatory), and IL-10 (immunomodulatory) were measured. The relationship of the cytokines to each other revealed a strong immunomodulatory effect depending on the proportion of flagellin in the construct. Our results demonstrate that SAPNs with flagellin may be a promising strategy for the development and delivery of a safe vaccine for infectious diseases.


Asunto(s)
Flagelina/inmunología , Inmunogenicidad Vacunal , Malaria Falciparum/prevención & control , Nanopartículas , Plasmodium falciparum/inmunología , Dominios Proteicos/inmunología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antiprotozoarios/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Flagelina/química , Flagelina/genética , Inmunización , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Ratones , Modelos Biológicos , Plasmodium falciparum/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Pliegue de Proteína , Multimerización de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes , Receptor Toll-Like 5/agonistas
12.
NPJ Vaccines ; 2: 24, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263879

RESUMEN

We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.

13.
J Nanobiotechnology ; 15(1): 62, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28877692

RESUMEN

BACKGROUND: The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. RESULTS: Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. CONCLUSIONS: We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.


Asunto(s)
Antígenos de Protozoos/uso terapéutico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Nanopartículas/uso terapéutico , Plasmodium falciparum/inmunología , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Proteínas Protozoarias/uso terapéutico , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Humanos , Inmunización , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Nanopartículas/química , Plasmodium falciparum/química , Plasmodium falciparum/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/inmunología , Dominios Proteicos , Ingeniería de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
15.
Nanomedicine ; 13(1): 241-251, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27593488

RESUMEN

Current influenza vaccines should be improved by the addition of universal influenza vaccine antigens in order to protect against multiple virus strains. We used our self-assembling protein nanoparticles (SAPNs) to display the two conserved influenza antigens M2e and Helix C in their native oligomerization states. To further improve the immunogenicity of the SAPNs, we designed and incorporated the TLR5 agonist flagellin into the SAPNs to generate self-adjuvanted SAPNs. We demonstrate that addition of flagellin does not affect the ability of SAPNs to self-assemble and that they are able to stimulate TLR5 in a dose-dependent manner. Chickens vaccinated with the self-adjuvanted SAPNs induce significantly higher levels of antibodies than those with unadjuvanted SAPNs and show higher cross-neutralizing activity compared to a commercial inactivated virus vaccine. Upon immunization with self-adjuvanted SAPNs, mice were completely protected against a lethal challenge. Thus, we have generated a self-adjuvanted SAPN with a great potential as a universal influenza vaccine.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la Influenza/inmunología , Nanopartículas/química , Infecciones por Orthomyxoviridae/prevención & control , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/administración & dosificación , Pollos , Perros , Flagelina/inmunología , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Nanopartículas/administración & dosificación , Receptor Toll-Like 5/inmunología , Vacunación
16.
Biochem Pharmacol ; 120: 1-14, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27157411

RESUMEN

Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.


Asunto(s)
Alergia e Inmunología/historia , Biofarmacia/historia , Química Farmacéutica/historia , Control de Enfermedades Transmisibles/historia , Vacunas/uso terapéutico , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/uso terapéutico , Alergia e Inmunología/tendencias , Animales , Antígenos/efectos adversos , Antígenos/química , Antígenos/inmunología , Antígenos/uso terapéutico , Biofarmacia/métodos , Biofarmacia/tendencias , Química Farmacéutica/tendencias , Control de Enfermedades Transmisibles/tendencias , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/veterinaria , Sistemas de Liberación de Medicamentos/efectos adversos , Sistemas de Liberación de Medicamentos/tendencias , Sistemas de Liberación de Medicamentos/veterinaria , Diseño de Fármacos , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Nanopartículas/efectos adversos , Nanopartículas/química , Nanopartículas/uso terapéutico , Ingeniería de Proteínas/tendencias , Ingeniería de Proteínas/veterinaria , Pliegue de Proteína , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Vacunas/efectos adversos , Vacunas/química , Vacunas/inmunología , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Drogas Veterinarias/efectos adversos , Drogas Veterinarias/química , Drogas Veterinarias/inmunología , Drogas Veterinarias/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...