Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38591495

RESUMEN

The main outcome of this research was to demonstrate the opportunity to obtain a stable and well-ordered structure of MCM-41 synthesized from fly ash. A series of bimetallic (Cu/Mn) catalysts supported at MCM-41 were prepared via grinding method and investigated in catalytic toluene combustion reaction to show the material's potential application. It was proved, that the Cu/Mn ratio had a crucial effect on the catalytic activity of prepared materials. The best catalytic performance was achieved with sample Cu/Mn(2.5/2.5), for which the temperature of 50% toluene conversion was found to be 300 °C. This value remains in line with the literature reports, for which comparable catalytic activity was attained for 3-fold higher metal loadings. Time-on-stream experiment proved the thermal stability of the investigated catalyst Cu/Mn(2.5/2.5). The obtained results bring a valuable background in the field of fly ash utilization, where fly ash-derived MCM-41 can be considered as efficient and stable support for dispersion of active phase for catalyst preparation.

2.
RSC Adv ; 13(34): 24112-24128, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577093

RESUMEN

Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36014640

RESUMEN

Synthetic Mg-Al hydrotalcites (HT) are environmentally friendly solid bases frequently applied as catalysts in base catalyzed reactions. The most common synthesis method, using NaOH as precipitant, is problematized by the possibility of introducing undesired Na contamination. Alkali-free synthesis is usually performed with NH3aq, a precipitant which is less efficient in incorporation of Mg into HT lattice. In the present work, organic bases, tetrabutylammonium hydroxide and choline hydroxide, were successfully employed as precipitating agents in a new alkali-free route of Mg-Al HT synthesis. HT solids were also obtained with inorganic bases, NH3aq and NaOH. Characterization with X-ray diffraction, elemental analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy and thermogravimetry/differential scanning calorimetry, confirmed the formation of nanocrystalline HT compounds with all employed bases. HT prepared with NH3aq exhibited an Mg deficit, which was detrimental to the catalytic activity in base catalyzed reactions. The effect was attributed to the tendency of Mg2+ to form ammine complexes, a conclusion supported by quantum mechanical calculations. HT prepared with NaOH showed the highest crystallinity, which was unfavorable for catalytic application. The addition of starch to the synthesis medium provided a means by which to diminish the crystal size of all HT precipitates. Catalytic tests of the Baeyer-Villiger oxidation of cyclohexanone demonstrated that the highest yields of ε-caprolactone were obtained with fine-crystalline HT catalysts prepared with organic bases in the presence of a starch template.

4.
Materials (Basel) ; 15(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009389

RESUMEN

Two new organic-inorganic hybrid compounds containing dicarboxylic pyridine acids have been obtained and characterized. Both compounds are potassium oxidodiperoxidomolybdates with 2,6-dicarboxylicpyridine acid or 3,5-dicarboxylicpyridine acid moieties, respectively. The chemical formula for the first one is C14H7K3Mo2N2O18 denoted as K26dcpa, the second C7H4K1Mo1N1O11.5-K35dcpa. Their crystal structures were determined using single crystal (K26dcpa) or XRPD-X-ray powder diffraction techniques (K35dcpa). The purity of the compounds was confirmed by elemental analysis. Their thermal stability was determined with the use of non-ambient XRPD. In addition, they were examined by IR spectroscopy methods and catalytic activity studies were performed for them. Catalytic tests in the Baeyer-Villiger reaction and biological activity have been performed for eight compounds: K26dcpa, K35dcpa, and six peroxidomolybdates previously obtained by our group. The anti-proliferative activity of peroxidomolybdenum compounds after 24 h of incubation was studied in vitro against three selected human tumor cell lines (SW620, LoVo, HEP G2) and normal human cells (fibroblasts). The data were expressed as IC50 values. The structure of the investigated oxodiperoxomolybdenum compounds was shown to have influence on the biological activity and catalytic properties. It has been shown that the newly-obtained compound, K35dcpa, is a very efficient catalyst in the Baeyer-Villiger reaction. The best biological activity results were obtained for Na-picO (previously obtained by us), which is a very effective anti-cancer agent towards SW 620 colorectal adenocarcinoma cells.

5.
Materials (Basel) ; 13(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899570

RESUMEN

Activation of natural sepiolite by means of grinding in a planetary mill followed by wet NaOH activation was studied for the purpose of endowing the product with enhanced basicity for potential catalytic/sorptive applications. Synthesized solids were characterized with X-ray powder diffraction (XRD), N2 adsorption/desorption, scanning electron microscopy (SEM), energy dispersive (EDX), atomic absorption (AAS), Fourier-transform infrared (FTIR) and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies. Surface basicity was determined by titration with benzoic acid. Grinding changed the pathway of sepiolite phase transformation upon NaOH treatment. The as-received sepiolite evolved to Na-sepiolite (loughlinite) with a micropore system blocked by nanocrystalline Mg(OH)2, while ground samples yielded magnesium silicate hydrate phase (MSH), with well-developed microporous texture. In unmilled sepiolite desilication involved preferential leaching of Si from the center of the structural ribbons, while in ground samples additional loss of Si from ribbon-ribbon corner linkages was observed. In all cases treatment with NaOH led to enhancement of surface basicity. Synthesized materials were tested as catalysts in a base-catalyzed aldol self-condensation of acetone and oxidation of cyclohexanone to ε-caprolactone, as well as CO2 sorbents. Catalytic trends depended not only on samples' basicity, but also on texture and phase composition of the catalysts. Grinding combined with alkali activation proved a simple and effective method for boosting CO2-sorption capacity of sepiolite to the level comparable to amine-functionalized, acid-activated sepiolite sorbents.

6.
Materials (Basel) ; 11(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011824

RESUMEN

The cobalt, manganese, and iron salts of tungstophosphoric or molybdophosphoric acid with growing content of metals were applied for the first time as catalysts in the Baeyer-Villiger (BV) oxidation of cyclohexanone to ε-caprolactone with molecular oxygen. The catalysts were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and ethanol decomposition reaction. Introduction of transition metals into the heteropoly structure increases the activity of resulting heteropoly salts in comparison with parent heteropolyacids. It was shown that the most active catalysts are salts of the heteropoly salts with one metal atom introduced and one proton left (HMPX) type, (where M = Co, Fe, Mn, and X = W, Mo) with the metal to proton ratio equal one. Among all of the studied catalysts, the highest catalytic activity was observed for HCoPW. The effect indicates that both the acidic and redox properties are required to achieve the best performance. The Baeyer-Villiger (BV) oxidation mechanism proposed identifies the participation of heteropoly compounds in three steps of the investigated reaction: oxidation of aldehyde to peracid (redox function), activation of carbonyl group (Lewis acidity), and decomposition of the Criegee adduct to ε-caprolactone (Brønsted acidity).

7.
Chemistry ; 23(37): 8857-8870, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28272755

RESUMEN

The TNU-9 zeolite (TUN framework) is one of the most complex zeolites known. It represents a highly promising matrix for both acid and redox catalytic reactions. We present here a newly developed approach involving the use of 29 Si and 27 Al (3Q) MAS NMR spectroscopy, CoII as probes monitored by UV/Vis and FTIR spectroscopy, and extensive periodic DFT calculations, including molecular dynamics, to investigating the aluminum distribution in the TUN framework and the location of aluminum pairs and divalent cations in extra-framework cationic positions. Our study reveals that 40 and 60 % of aluminum atoms in the TNU-9 zeolite are isolated single aluminum atoms and aluminum pairs, respectively. The aluminum pairs are present in two types of six-membered rings forming the corresponding α and ß (15 and 85 %, respectively, of aluminum pairs) sites of bare divalent cations. The α site is located on the TUN straight channel wall and it connects two channel intersections. The suggested near-planar ß site is present at the channel intersection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...