Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 105(6): 1263-1278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38286178

RESUMEN

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.


Asunto(s)
Progresión de la Enfermedad , Tasa de Filtración Glomerular , Riñón , Medicina de Precisión , Insuficiencia Renal Crónica , Transcriptoma , Humanos , Medicina de Precisión/métodos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/fisiopatología , Persona de Mediana Edad , Femenino , Masculino , Riñón/patología , Riñón/fisiopatología , Anciano , Biopsia , Adulto , Redes Neurales de la Computación , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Aprendizaje Automático no Supervisado
2.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069998

RESUMEN

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/genética , Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Inflamación
3.
J Am Soc Nephrol ; 34(7): 1279-1291, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022120

RESUMEN

SIGNIFICANCE STATEMENT: Although gene expression changes have been characterized in human diabetic kidney disease (DKD), unbiased tissue proteomics information for this condition is lacking. The authors conducted an unbiased aptamer-based proteomic analysis of samples from patients with DKD and healthy controls, identifying proteins with levels that associate with kidney function (eGFR) or fibrosis, after adjusting for key covariates. Overall, tissue gene expression only modestly correlated with tissue protein levels. Kidney protein and RNA levels of matrix metalloproteinase 7 (MMP7) strongly correlated with fibrosis and with eGFR. Single-cell RNA sequencing indicated that kidney tubule cells are an important source of MMP7. Furthermore, plasma MMP7 levels predicted future kidney function decline. These findings identify kidney tissue MMP7 as a biomarker of fibrosis and blood MMP7 as a biomarker for future kidney function decline. BACKGROUND: Diabetic kidney disease (DKD) is responsible for close to half of all ESKD cases. Although unbiased gene expression changes have been extensively characterized in human kidney tissue samples, unbiased protein-level information is not available. METHODS: We collected human kidney samples from 23 individuals with DKD and ten healthy controls, gathered associated clinical and demographics information, and implemented histologic analysis. We performed unbiased proteomics using the SomaScan platform and quantified the level of 1305 proteins and analyzed gene expression levels by bulk RNA and single-cell RNA sequencing (scRNA-seq). We validated protein levels in a separate cohort of kidney tissue samples as well as in 11,030 blood samples. RESULTS: Globally, human kidney transcript and protein levels showed only modest correlation. Our analysis identified 14 proteins with kidney tissue levels that correlated with eGFR and found that the levels of 152 proteins correlated with interstitial fibrosis. Of the identified proteins, matrix metalloprotease 7 (MMP7) showed the strongest association with both fibrosis and eGFR. The correlation between tissue MMP7 protein expression and kidney function was validated in external datasets. The levels of MMP7 RNA correlated with fibrosis in the primary and validation datasets. Findings from scRNA-seq pointed to proximal tubules, connecting tubules, and principal cells as likely cellular sources of increased tissue MMP7 expression. Furthermore, plasma MMP7 levels correlated not only with kidney function but also associated with prospective kidney function decline. CONCLUSIONS: Our findings, which underscore the value of human kidney tissue proteomics analysis, identify kidney tissue MMP7 as a diagnostic marker of kidney fibrosis and blood MMP7 as a biomarker for future kidney function decline.


Asunto(s)
Nefropatías Diabéticas , Metaloproteinasa 7 de la Matriz , Humanos , Metaloproteinasa 7 de la Matriz/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Proteómica , Riñón/metabolismo , Biomarcadores , Fibrosis , ARN
4.
Nat Commun ; 13(1): 5253, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068241

RESUMEN

The proximal tubule is a key regulator of kidney function and glucose metabolism. Diabetic kidney disease leads to proximal tubule injury and changes in chromatin accessibility that modify the activity of transcription factors involved in glucose metabolism and inflammation. Here we use single nucleus RNA and ATAC sequencing to show that diabetic kidney disease leads to reduced accessibility of glucocorticoid receptor binding sites and an injury-associated expression signature in the proximal tubule. We hypothesize that chromatin accessibility is regulated by genetic background and closely-intertwined with metabolic memory, which pre-programs the proximal tubule to respond differently to external stimuli. Glucocorticoid excess has long been known to increase risk for type 2 diabetes, which raises the possibility that glucocorticoid receptor inhibition may mitigate the adverse metabolic effects of diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Cromatina/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Antecedentes Genéticos , Glucosa/metabolismo , Humanos , Receptores de Glucocorticoides/genética
5.
BMC Nephrol ; 21(1): 242, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600374

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). METHODS: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. DISCUSSION: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03716401 ).


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/diagnóstico por imagen , Riñón/diagnóstico por imagen , Insuficiencia Renal Crónica/diagnóstico por imagen , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Humanos , Riñón/irrigación sanguínea , Riñón/patología , Imagen por Resonancia Magnética , Estudios Observacionales como Asunto , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones , Pronóstico , Estudios Prospectivos , Circulación Renal , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Ultrasonografía
6.
Drug Discov Today ; 23(10): 1695-1699, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29778696

RESUMEN

Despite significant effort, patients with kidney disease have not seen their outcomes improved significantly over the past two decades. This has motivated clinicians and researchers to consider alternative methods to identifying risk factors, disease progression markers, and effective therapies. Genome-scale data sets from patients with renal disease can be used to establish a platform to improve understanding of the molecular basis of disease; however, such studies require expertise and resources. To overcome these challenges, we formed an academic-industry consortium to share molecular target identification efforts and expertise across academia and the pharmaceutical industry. The Renal Pre-Competitive Consortium (RPC2) aims to accelerate novel drug development for kidney diseases through a systems biology approach. Here, we describe the rationale, philosophy, establishment, and initial results of this strategy.


Asunto(s)
Desarrollo de Medicamentos/métodos , Enfermedades Renales/tratamiento farmacológico , Terapia Molecular Dirigida , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Diseño de Fármacos , Industria Farmacéutica/métodos , Humanos , Factores de Riesgo , Biología de Sistemas/métodos
7.
Clin Exp Nephrol ; 22(4): 906-916, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29453607

RESUMEN

BACKGROUND: Semaphorin 7A (SEMA7A) is an immunomodulating protein implicated in lung and liver fibrosis. In autosomal-dominant polycystic kidney disease (ADPKD), the progressive expansion of renal cysts, inflammation, and subsequent renal fibrosis leads to end-stage renal disease (ESRD). SEMA7A may play a role in renal fibrosis and in ADPKD. METHODS: We evaluated Sema7a in a mouse model of renal fibrosis and determined the expression of SEMA7A in human ADPKD kidney. We analyzed SEMA7A expression on peripheral blood mononuclear cells (PBMCs), including CD45+ (leukocyte), CD14+(monocyte), CD4+ (T lymphocytes) and CD4+Foxp3+CD25+ [regulatory T lymphocytes (Tregs)] from 90 ADPKD patients (11 tolvaptan treated and 79 tolvaptan naïve), and 21 healthy volunteers, using a Fluorescence-Activated Cell Sorting (FACS). RESULTS: Sema7a is required for renal fibrosis. SEMA7A shows robust expression in ADPKD kidneys, localizing to cysts derived from distal tubules. SEMA7A is higher in circulating monocytes, but unchanged in CD4+ lymphocytes in ADPKD patients. The SEMA7A increase was detected early (stage 1 CKD) and seemed more prominent in patients with smaller kidneys (p = 0.09). Compared to tolvaptan-naïve ADPKD patients, those treated with tolvaptan showed reduced SEMA7A expression on monocytes, T lymphocytes, and Tregs, although the number of PBMCs was unchanged. After 1 month of tolvaptan treatment, SEMA7A expression on Tregs decreased. CONCLUSIONS: SEMA7A shows potential as both a therapeutic target in mammalian kidney fibrosis and as a marker of inflammation in ADPKD patients. SEMA7A expression was lower after tolvaptan treatment, which may reflect drug efficacy.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Antígenos CD/análisis , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Semaforinas/análisis , Linfocitos T Reguladores , Tolvaptán/uso terapéutico , Animales , Femenino , Proteínas Ligadas a GPI/análisis , Humanos , Riñón , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/inmunología
8.
Am J Physiol Renal Physiol ; 308(5): F459-72, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25537742

RESUMEN

Kidney fibrosis is the final common pathway for virtually every type of chronic kidney disease and is a consequence of a prolonged healing response that follows tissue inflammation. Chronic kidney inflammation ultimately leads to progressive tissue injury and scarring/fibrosis. Several pathways have been implicated in the progression of kidney fibrosis. In the present study, we demonstrate that G protein-coupled chemokine (C-X-C motif) receptor (CXCR)4 was significantly upregulated after renal injury and that sustained activation of Cxcr4 expression augmented the fibrotic response. We demonstrate that after unilateral ureteral obstruction (UUO), both gene and protein expression of Cxcr4 were highly upregulated in tubular cells of the nephron. The increased Cxcr4 expression in tubules correlated with their increased dedifferentiated state, leading to increased mRNA expression of platelet-derived growth factor (PDGF)-α, transforming growth factor (TGF)-ß1, and concurrent loss of bone morphogenetic protein 7 (Bmp7). Ablation of tubular Cxcr4 attenuated UUO-mediated fibrotic responses, which correlated with a significant reduction in PDGF-α and TGF-ß1 levels and preservation of Bmp7 expression after UUO. Furthermore, Cxcr4(+) immune cells infiltrated the obstructed kidney and further upregulate their Cxcr4 expression. Genetic ablation of Cxcr4 from macrophages was protective against UUO-induced fibrosis. There was also reduced total kidney TGF-ß1, which correlated with reduced Smad activation and α-smooth muscle actin levels. We conclude that chronic high Cxcr4 expression in multiple effector cell types can contribute to the pathogenesis of renal fibrosis by altering their biological profile. This study uncovered a novel cross-talk between Cxcr4-TGF-ß1 and Bmp7 pathways and may provide novel targets for interrupting the progression of fibrosis.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Riñón/metabolismo , Nefroesclerosis/etiología , Receptores CXCR4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Bencilaminas , Ciclamas , Fibrosis , Compuestos Heterocíclicos , Riñón/inmunología , Riñón/patología , Activación de Macrófagos , Masculino , Ratones Endogámicos C57BL , Nefroesclerosis/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Regulación hacia Arriba , Obstrucción Ureteral
9.
Respir Res ; 15: 32, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24641672

RESUMEN

BACKGROUND: Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms attenuate hyperoxic lung growth retardation and to identify the target cell for VEGF action. METHODS: Timed pregnant CD-1 or fetal liver kinase (FLK1)-eGFP lung explants cultured in 3% or 50% oxygen were treated ± Vegf121, VEGF164/Vegf165 or VEGF188 in the presence or absence of anti-rat neuropilin-1 (NRP1) antibody or GO6983 (protein kinase C (PKC) pan-inhibitor) and lung growth and branching quantified. Immunofluorescence studies were performed to determine apoptosis index and location of FLK1 phosphorylation and western blot studies of lung explants were performed to define the signaling pathways that mediate the protective effects of VEGF. RESULTS: Heparin-binding VEGF isoforms (VEGF164/Vegf165 and VEGF188) but not Vegf121 selectively reduced epithelial apoptosis and partially rescued lung bud branching and growth. These protective effects required NRP1-dependent FLK1 activation in endothelial cells. Analysis of downstream signaling pathways demonstrated that the VEGF-mediated anti-apoptotic effects were dependent on PKC activation. CONCLUSIONS: Vegf165 activates FLK1-NRP1 signaling in endothelial cells, leading to a PKC-dependent paracrine signal that in turn inhibits epithelial cell apoptosis.


Asunto(s)
Heparina/metabolismo , Pulmón/metabolismo , Neuropilina-1/fisiología , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Femenino , Pulmón/crecimiento & desarrollo , Pulmón/patología , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Embarazo , Unión Proteica/fisiología , Isoformas de Proteínas/fisiología , Distribución Aleatoria , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Curr Diab Rep ; 12(4): 414-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22644874

RESUMEN

Diabetes mellitus is rapidly becoming a global health issue that may overtake cancer during the next two decades as it covertly affects multiple organ systems that goes undiagnosed long after the onset. A number of complications are associated with poorly controlled hyperglycemia. Diabetic nephropathy is one of the most common complications of diabetes mellitus. Other than angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blocker (ARB) there is not much in the armamentarium with which to treat patients with overt diabetic nephropathy. Research points towards a multifactorial etiology and complex interplay of several pathogenic pathways that can contribute to the declining kidney function in diabetes. Patients with diabetic nephropathy (and with any chronic kidney disease) eventually develop kidney fibrosis. Despite the financial and labor investment spent on determining the basic mechanism of fibrosis, not much progress has been made in terms of therapeutic targets available to us today. This may be in part due to paucity in the experimental animal models available. However, there now seems to be a concerted effort from several pharmaceutical companies to develop a drug that would halt/delay the process of fibrosis, if not reverse it. This review discusses the current state of research in the field while staying within the context of diabetic nephropathy.


Asunto(s)
Albuminuria/tratamiento farmacológico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Riñón/patología , Albuminuria/diagnóstico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Femenino , Fibrosis/prevención & control , Humanos , Hiperglucemia/complicaciones , Fallo Renal Crónico/prevención & control , Masculino , Sistema Renina-Angiotensina/efectos de los fármacos , Resultado del Tratamiento
11.
J Am Soc Nephrol ; 22(10): 1809-14, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21921140

RESUMEN

Polycystic kidney disease (PKD) exhibits an inflammatory component, but the contribution of inflammation to cyst progression is unknown. Macrophages promote the proliferation of tubular cells following ischemic injury, suggesting that they may have a role in cystogenesis. Furthermore, cultured Pkd1-deficient cells express the macrophage chemoattractants Mcp1 and Cxcl16 and stimulate macrophage migration. Here, in orthologous models of both PKD1 and PKD2, abnormally large numbers of alternatively activated macrophages surrounded the cysts. To determine whether pericystic macrophages contribute to the proliferation of cyst-lining cells, we depleted phagocytic cells from Pkd1(fl/fl);Pkhd1-Cre mice by treating with liposomal clodronate from postnatal day 10 until day 24. Compared with vehicle-treated controls, macrophage-depleted mice had a significantly lower cystic index, reduced proliferation of cyst-lining cells, better-preserved renal parenchyma, and improved renal function. In conclusion, these data suggest that macrophages home to cystic areas and contribute to cyst growth. Interruption of these homing and proliferative signals could have therapeutic potential for PKD.


Asunto(s)
Movimiento Celular , Macrófagos/fisiología , Riñón Poliquístico Autosómico Dominante/inmunología , Animales , Antígenos Ly/metabolismo , Línea Celular , Proliferación Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL16 , Quimiocina CXCL6/metabolismo , Ratones , Ratones Endogámicos C57BL
12.
Proc Natl Acad Sci U S A ; 108(6): 2462-7, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262823

RESUMEN

Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proliferación Celular , Células Epiteliales/enzimología , Riñón Poliquístico Autosómico Dominante/enzimología , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Perros , Células Epiteliales/patología , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones , Ratones Transgénicos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
Dev Dyn ; 238(5): 1083-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19384956

RESUMEN

The CXCR4 chemokine receptor is involved in hematopoietic stem cell homing, neuronal development, and angiogenesis. We show a significant new role for this receptor in epithelial patterning and renal morphogenesis. This receptor is expressed in the ureteric bud (UB) and the metanephric mesenchyme (MM). Stimulation of Cxcr4 in renal tubular cells leads to activation of multiple signaling pathways and tubulogenesis and cell migration. Knocking down of this receptor in tubular cells leads to cyst formation. Inactivation of this receptor in embryonic kidney explants results in impaired UB branching and mesenchymal tubulogenesis. The data presented here point to its importance in the process of mesenchymal-to-epithelial transitioning (MET), a crucial developmental process in the embryonic kidney. A number of genes important for normal tubulogenesis and MET are decreased upon CXCR4 inactivation.


Asunto(s)
Túbulos Renales/embriología , Morfogénesis , Receptores CXCR4/fisiología , Animales , Diferenciación Celular , Línea Celular , Quimiocina CXCL12/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Túbulos Renales/citología , Túbulos Renales/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Morfogénesis/genética , Técnicas de Cultivo de Órganos , Receptores CXCR4/genética
14.
Mech Dev ; 126(3-4): 91-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19150651

RESUMEN

There is growing evidence that vascular endothelial growth factor (Vegf), a well-recognized angiogenic factor, plays a regulatory role in non-endothelial tissues such as neurons and epithelial cells. In the kidney Vegf receptors have been detected in proximal tubule cells of the adult kidney and Vegf has been show to stimulate branching morphogenesis of the developing kidney. In this study, using laser-microdissection as well as manual separation of the UB, we demonstrate that Vegf receptors are present in the ureteric bud (UB). Furthermore, we determine that Vegf stimulates UB branching in whole kidney explant that is mediated directly by signaling through Vegfr2. In addition, Vegf also induced branching response in isolated UBs that are free of the surrounding mesenchyme. These responses seem to be strictly dependent on the dose of Vegf such that higher doses are inhibitory while lower dose are stimulatory. These data place Vegf in a unique position of being able to modulate vascular as well as epithelial development in the embryonic kidney.


Asunto(s)
Células Epiteliales/metabolismo , Riñón/embriología , Riñón/metabolismo , Morfogénesis , Uréter/embriología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Riñón/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/embriología , Ratones , Morfogénesis/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Uréter/citología , Uréter/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Development ; 136(2): 337-45, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19103805

RESUMEN

Ureteric bud (UB) branching during kidney development determines the final number of nephrons. Although hepatocyte growth factor and its receptor Met have been shown to stimulate branching morphogenesis in explanted embryonic kidneys, loss of Met expression is lethal during early embryogenesis without obvious kidney abnormalities. Met(fl/fl);HoxB7-Cre mice, which lack Met expression selectively in the UB, were generated and found to have a reduction in final nephron number. These mice have increased Egf receptor expression in both the embryonic and adult kidney, and exogenous Egf can partially rescue the branching defect seen in kidney explants. Met(fl/fl);HoxB7-Cre;wa-2/wa-2 mice, which lack normal Egfr and Met signaling, exhibit small kidneys with a marked decrease in UB branching at E14.5 as well as a reduction in final glomerular number. These mice developed progressive interstitial fibrosis surrounding collecting ducts with kidney failure and death by 3-4 weeks of age. Thus, in support of previous in vitro findings, Met and the Egf receptor can act cooperatively to regulate UB branching and mediate maintenance of the normal adult collecting duct.


Asunto(s)
Receptores ErbB/metabolismo , Túbulos Renales Colectores/crecimiento & desarrollo , Nefronas/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN/genética , Receptores ErbB/deficiencia , Receptores ErbB/genética , Femenino , Riñón/anomalías , Túbulos Renales Colectores/embriología , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Nefronas/embriología , Nefronas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-met/deficiencia , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Insuficiencia Renal/genética , Insuficiencia Renal/patología , Transducción de Señal , Uréter/embriología , Uréter/metabolismo
16.
Kidney Int ; 74(10): 1310-1318, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18974761

RESUMEN

Cyst growth in patients with autosomal dominant polycystic kidney disease is thought to be due to increased tubular cell proliferation. One model to explain this altered proliferation suggests that the polycystin proteins PC1 and PC2 localize to apical cilia and serve as an integral part of the flow-sensing pathway thus modulating the proliferative response. We measured proliferation and apoptosis in proximal tubule derived cell lines lacking PC1. These cells showed increased rates of proliferation, a decreased rate of apoptosis, compared to control heterozygous cell lines, and spontaneously formed cysts rather than tubules in an in vitro tubulogenesis assay. Addition of neutrophil gelatinase associated lipocalin (NGAL), a small secreted protein that binds diverse ligands, to the cells lacking PC1 inhibited proliferation and increased apoptosis leading to slower cyst growth in vitro. Sustained over-expression at low level of NGAL by an adenoviral delivery system suppressed cyst enlargement without improving renal function in the Pkd1 mutant mice. Our studies show that renal epithelial cells lacking PC1 have an inherent tendency to hyper-proliferate forming cysts in vitro independent of a flow stimulus. The potential benefit of attenuating cyst growth with NGAL remains to be determined.


Asunto(s)
Proteínas de Fase Aguda/fisiología , Quistes/patología , Lipocalinas/fisiología , Proteínas Oncogénicas/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Canales Catiónicos TRPP/fisiología , Animales , Apoptosis , Proliferación Celular , Quistes/etiología , Células Epiteliales/patología , Túbulos Renales Proximales/patología , Lipocalina 2 , Ratones , Enfermedades Renales Poliquísticas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Canales Catiónicos TRPP/deficiencia
17.
Pediatr Res ; 63(1): 20-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18043510

RESUMEN

Ambient oxygen concentration and vascular endothelial growth factor (VEGF)-A are vital in lung development. Since hypoxia stimulates VEGF-A production and hyperoxia reduces it, we hypothesized that VEGF-A down-regulation by exposure of airways to hyperoxia may result in abnormal lung development. An established model of in vitro rat lung development was used to examine the effects of hyperoxia on embryonic lung morphogenesis and VEGF-A expression. Under physiologic conditions, lung explant growth and branching is similar to that seen in vivo. However, in hyperoxia (50% O2) the number of terminal buds and branch length was significantly reduced after 4 d of culture. This effect correlated with a significant increase in cellular apoptosis and decrease in proliferation compared with culture under physiologic conditions. mRNA for Vegf164 and Vegf188 was reduced during hyperoxia and addition of VEGF165, but not VEGF121, to explants grown in 50% O2 resulted in partial reversal of the decrease in lung branching, correlating with a decrease in cell apoptosis. Thus, hyperoxia suppresses VEGF-A expression and inhibits airway growth and branching. The ability of exogenous VEGF165 to partially reverse apoptotic effects suggests this may be a potential approach for the prevention of hyperoxic injury.


Asunto(s)
Apoptosis , Hiperoxia/metabolismo , Pulmón/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Hiperoxia/embriología , Hiperoxia/genética , Hiperoxia/patología , Pulmón/embriología , Pulmón/patología , Morfogénesis , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética
18.
J Biol Chem ; 281(1): 137-44, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16278216

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/fisiología , Túbulos Renales/patología , Proteínas de la Membrana/fisiología , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/fisiopatología , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular , Quistes/patología , Quistes/fisiopatología , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/fisiología , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Proteínas de la Membrana/genética , Canales Catiónicos TRPP
19.
Mol Cell Biol ; 25(17): 7441-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107693

RESUMEN

Vascular endothelial growth factor (VEGF) is well characterized for its role in endothelial cell differentiation and vascular tube formation. Alternate splicing of the VEGF gene in mice results in various VEGF-A isoforms, including VEGF-121 and VEGF-165. VEGF-165 is the most abundant isoform in the kidney and has been implicated in glomerulogenesis. However, its role in the tubular epithelium is not known. We demonstrate that VEGF-165 but not VEGF-121 induces single-cell branching morphogenesis and multicellular tubulogenesis in mouse renal tubular epithelial cells and that these morphogenic effects require activation of the phosphatidylinositol 3-kinase (PI 3-K) and, to a lesser degree, the extracellular signal-regulated kinase and protein kinase C signaling pathways. Further, VEGF-165-stimulated sheet migration is dependent only on PI 3-K signaling. These morphogenic effects of VEGF-165 require activation of both VEGF receptor 2 (VEGFR-2) and neuropilin-1 (Nrp-1), since neutralizing antibodies to either of these receptors or the addition of semaphorin 3A (which blocks VEGF-165 binding to Nrp-1) prevents the morphogenic response and the phosphorylation of VEGFR-2 along with the downstream signaling. We thus conclude that in addition to endothelial vasculogenesis, VEGF can induce renal epithelial cell morphogenesis in a Nrp-1-dependent fashion.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Riñón/efectos de los fármacos , Riñón/crecimiento & desarrollo , Neuropilinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Línea Celular , Movimiento Celular , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Morfogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/farmacología , Proteína Quinasa C/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
20.
Nephron Exp Nephrol ; 100(1): e40-5, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15731568

RESUMEN

The phenomenon of branching morphogenesis is a fundamental process critical for development of several tubular organs including lung, mammary gland, and kidney. In the case of kidney, the ureteric bud (UB) that extends out from a pre-existing epithelial tube, the Wolffian duct, gives rise to the branched collecting duct system while the surrounding metanephric mesenchyme undergoes mesenchymal-epithelial transition to form the proximal parts of the nephron. These events are mediated by several soluble factors that act in a cooperative fashion either as pro or anti tubulogenic factors. Among the growing list of such molecules are the members of the FGF, TGF-beta, and Wnt families as well as GDNF, HGF, and EGF. Cells respond to these soluble factors by initiating signaling pathways that regulate cell proliferation, cell migration and cell morphogenesis. These signaling pathways are also regulated in parallel by cell-cell and cell-matrix interactions, leading to the complex events necessary for tubule formation. Recent in-vitro and in-vivo studies have begun to shed light on the overall regulation of this phenomenon while the specific subcellular mechanisms are only beginning to be understood. This review focuses on our understanding of the morphogenic responses that regulate in-vitro tubulogenesis and how they may help us to ultimately understand this process in vivo in the kidney.


Asunto(s)
Sustancias de Crecimiento/fisiología , Túbulos Renales/embriología , Transducción de Señal , Comunicación Celular , Movimiento Celular , Proliferación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...