Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Alzheimers Res Ther ; 16(1): 112, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762725

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aß deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS: Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aß-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aß accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS: Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aß pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS: Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Atrofia , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Biomarcadores/sangre , Atrofia/patología , Persona de Mediana Edad , Apolipoproteína E4/genética , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Imagen por Resonancia Magnética/métodos , Proteínas de Neurofilamentos/sangre , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Heterocigoto , Proteína Ácida Fibrilar de la Glía/sangre , Compuestos de Anilina , Tiazoles
2.
Alzheimers Dement ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753951

RESUMEN

INTRODUCTION: Plasma biomarkers of Alzheimer's disease and related dementias predict global cognitive performance and decline over time; it remains unclear how they associate with changes in different dementia syndromes affecting distinct cognitive domains. METHODS: In a prospective study with repeated assessments of a randomly selected population-based cohort (n = 787, median age 73), we evaluated performance and decline in different cognitive domains over up to 8 years in relation to plasma concentrations of amyloid beta 42/40 (Aß42/40) ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP). RESULTS: Cross-sectionally, memory showed the strongest associations with p-tau181, and attention, executive, and visuospatial functions with NfL. Longitudinally, memory decline was distinguishable with all biomarker profiles dichotomized according to data-driven cutoffs, most efficiently with Aß42/40. GFAP and Aß42/40 were the best discriminators of decline patterns in language and visuospatial functions, respectively. DISCUSSION: These relatively non-invasive tests may be beneficial for clinical screening after replication in other populations and validation through neuroimaging or cerebrospinal fluid analysis. HIGHLIGHTS: We performed a prospective study with up to 8 years of repeated domain-specific cognitive assessments and baseline plasma Alzheimer's disease and related dementias biomarker measurements in a randomly selected population-based cohort. We considered distinct growth curves of trajectories of different cognitive domains and survival bias induced by missing data by adding quadratic time and applying joint modeling technique. Cross-sectionally, memory showed the strongest associations with plasma phosphorylated tau181, while attention, executive, and visuospatial functions were most strongly associated with neurofilament light chain. Longitudinally, memory and visuospatial declines were most efficiently distinguished by dichotomized amyloid beta 42/40 profile among all plasma biomarkers, while language was by dichotomized glial fibrillary acidic protein. These relatively non-invasive tests may be beneficial for clinical screening; however, they will need replication in other populations and validation through neuroimaging and/or cerebrospinal fluid assessments.

3.
Mol Neurodegener ; 19(1): 40, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750570

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aß]40, Aß42, Aß42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.


Asunto(s)
Enfermedad de Alzheimer , Bancos de Muestras Biológicas , Biomarcadores , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/sangre , Bancos de Muestras Biológicas/normas , Proyectos de Investigación/normas , Péptidos beta-Amiloides/sangre , Manejo de Especímenes/normas , Manejo de Especímenes/métodos , Proteínas tau/sangre
4.
Commun Biol ; 7(1): 528, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704445

RESUMEN

Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-ß (Aß) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aß and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aß-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Humanos , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Modelos Neurológicos , Biomarcadores/sangre , Anciano de 80 o más Años , Electroencefalografía , Neuronas/metabolismo
5.
Alzheimers Dement (N Y) ; 10(2): e12460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617114

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is increasing in the Caribbean, especially for persons of African ancestry (PAA) and women. However, studies have mostly utilized surveys without AD biomarkers. METHODS: In the Tobago Health Study (n = 309; 109 women, mean age 70.3 ± 6.6), we assessed sex differences and risk factors for serum levels of phosphorylated tau-181 (p-tau181), amyloid-beta (Aß)42/40 ratio, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Blood samples were from 2010 to 2013 for men and from 2019 to 2023 for women. RESULTS: Women were more obese, hypertensive, and sedentary but reported less smoking and alcohol use than men (age-adjusted p < 0.04). Compared to men, women had worse levels of AD biomarkers, with higher p-tau181 and lower Aß42/40, independent of covariates (p < 0.001). In sex-stratified analyses, higher p-tau181 was associated with older age in women and with hypertension in men. GFAP and NfL did not differ by sex. DISCUSSION: Women had worse AD biomarkers than men, unexplained by age, cardiometabolic diseases, or lifestyle. Studying risk factors for AD in PAA is warranted, especially for women earlier in life.

6.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575616

RESUMEN

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquídeo , Atrofia
7.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562890

RESUMEN

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS: Higher GFAP levels were associated with NPS at baseline (ß=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (ß=0.29, p=.007 and ß=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (ß=0.23, p=.035 and ß=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION: Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.

8.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38429551

RESUMEN

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo
9.
Alzheimers Dement ; 20(4): 2894-2905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520322

RESUMEN

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares , Inmunoensayo , Péptidos/metabolismo
10.
Nat Commun ; 15(1): 2615, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521766

RESUMEN

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Neuropatología , Plasma , Ovillos Neurofibrilares , Autopsia , Proteínas tau , Biomarcadores , Péptidos beta-Amiloides
11.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496591

RESUMEN

INTRODUCTION: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS: We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS: Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aß42 and Aß40 across all approaches. Additionally, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION: Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.

12.
Alzheimers Dement ; 20(4): 3114-3115, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328965

RESUMEN

Alzheimer's disease (AD) represents a growing global health challenge, necessitating accurate and reliable diagnostic methodologies for timely intervention and management. Immunoassays, specifically designed to detect biomarkers associated with AD pathology, have emerged as pivotal tools in diagnostic development. Understanding of the established protocols ensures assay sensitivity, specificity, and reproducibility, thereby enhancing the clinical utility of these diagnostic tools. Here, we explore the considerations in immunoassay development, focusing on phosphorylated tau217 assays. Ultimately, a clear understanding of immunoassay development is paramount in advancing the precision and reliability of AD diagnostics, contributing to early detection, improved patient outcomes, and advancements in therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/diagnóstico , Plasma , Biomarcadores , Proteínas tau , Péptidos beta-Amiloides
13.
Neurobiol Aging ; 136: 88-98, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335912

RESUMEN

Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-ß1-42 (Aß1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aß1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Humanos , Anciano , Femenino , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Cognición/fisiología , Progresión de la Enfermedad
14.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185677

RESUMEN

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteínas Amiloidogénicas , Inmunoensayo , Espectrometría de Masas , Biomarcadores
15.
Am J Obstet Gynecol ; 230(3): 342.e1-342.e8, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939982

RESUMEN

BACKGROUND: Identifying risk factors for Alzheimer disease in women is important as women compose two-thirds of individuals with Alzheimer disease. Previous work links vasomotor symptoms, the cardinal menopausal symptom, with poor memory performance and alterations in brain structure, function, and connectivity. These associations are evident when vasomotor symptoms are monitored objectively with ambulatory skin conductance monitors. OBJECTIVE: This study aimed to determine whether vasomotor symptoms are associated with Alzheimer disease biomarkers. STUDY DESIGN: Between 2017 and 2020, the MsBrain study enrolled 274 community-dwelling women aged 45 to 67 years who had a uterus and at least 1 ovary and were late perimenopausal or postmenopausal status. The key exclusion criteria included neurologic disorder, surgical menopause, and recent use of hormonal or nonhormonal vasomotor symptom treatment. Women underwent 24 hours of ambulatory skin conductance monitoring to assess vasomotor symptoms. Plasma concentrations of Alzheimer disease biomarkers, including amyloid ß 42-to-amyloid ß 40 ratio, phosphorylated tau (181 and 231), glial fibrillary acidic protein, and neurofilament light, were measured using a single-molecule array (Simoa) technology. Associations between vasomotor symptoms and Alzheimer disease biomarkers were assessed via linear regression models adjusted for age, race and ethnicity, education, body mass index, and apolipoprotein E4 status. Additional models adjusted for estradiol and sleep. RESULTS: A total of 248 (mean age, 59.06 years; 81% White; 99% postmenopausal status) of enrolled MsBrain participants contributed data. Objectively assessed vasomotor symptoms occurring during sleep were associated with significantly lower amyloid ß 42/amyloid ß 40, (beta, -.0010 [standard error, .0004]; P=.018; multivariable), suggestive of greater brain amyloid ß pathology. The findings remained significant after additional adjustments for estradiol and sleep. CONCLUSION: Nighttime vasomotor symptoms may be a marker of women at risk of Alzheimer disease. It is yet unknown if these associations are causal.


Asunto(s)
Enfermedad de Alzheimer , Menopausia , Femenino , Humanos , Persona de Mediana Edad , Sofocos , Péptidos beta-Amiloides , Sudoración , Biomarcadores , Estradiol
16.
J Neurol ; 271(3): 1297-1310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37950758

RESUMEN

Plasma neurofilament light chain (NfL) is a promising biomarker of axonal damage for the diagnosis of neurodegenerative diseases. Phosphorylated neurofilament heavy chain (pNfH) has demonstrated its value in motor neuron diseases diagnosis, but has less been explored for dementia diagnosis. In a cross-sectional study, we compared cerebrospinal fluid (CSF) and plasma NfL and pNfH levels in n = 188 patients from Lariboisière Hospital, Paris, France, including AD patients at mild cognitive impairment stage (AD-MCI, n = 36) and dementia stage (n = 64), non-AD MCI (n = 38), non-AD dementia (n = 28) patients and control subjects (n = 22). Plasma NfL, plasma and CSF pNfH levels were measured using Simoa and CSF NfL using ELISA. The correlation between CSF and plasma levels was stronger for NfL than pNfH (rho = 0.77 and rho = 0.52, respectively). All neurofilament markers were increased in AD-MCI, AD dementia and non-AD dementia groups compared with controls. CSF NfL, CSF pNfH and plasma NfL showed high performance to discriminate AD at both MCI and dementia stages from control subjects [AUC (area under the curve) = 0.82-0.91]. Plasma pNfH displayed overall lower AUCs for discrimination between groups compared with CSF pNfH. Neurofilament markers showed similar moderate association with cognition. NfL levels displayed significant association with mediotemporal lobe atrophy and white matter lesions in the AD group. Our results suggest that CSF NfL and pNfH as well as plasma NfL levels display equivalent performance in both positive and differential AD diagnosis in memory clinic settings. In contrast to motoneuron disorders, plasma pNfH did not demonstrate added value as compared with plasma NfL.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de la Neurona Motora , Enfermedades del Sistema Nervioso , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/líquido cefalorraquídeo , Estudios Transversales , Proteínas de Neurofilamentos , Proteínas tau/líquido cefalorraquídeo
17.
Alzheimers Dement ; 20(2): 1239-1249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37975513

RESUMEN

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changes and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n = 308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaßeta Brain Research Center's Alzheimer's At-Risk Cohort [ß-AARC]). RESULTS: UGOT p-tau217 showed high accuracy (area under the curve [AUC] = 0.80-0.91) identifying amyloid beta (Aß) pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC = 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Encéfalo , Biomarcadores/líquido cefalorraquídeo
18.
Alzheimers Dement ; 20(1): 745-751, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858957

RESUMEN

INTRODUCTION: Rapidly progressive dementias (RPDs) are a group of neurological disorders characterized by a rapid cognitive decline. The diagnostic value of blood-based biomarkers for Alzheimer's disease (AD) in RPD has not been fully explored. METHODS: We measured plasma brain-derived tau (BD-tau) and p-tau181 in 11 controls, 15 AD patients, and 33 with RPD, of which 19 were Creutzfeldt-Jakob disease (CJD). RESULTS: Plasma BD-tau differentiated AD from RPD and controls (p = 0.002 and p = 0.03, respectively), while plasma and cerebrospinal fluid (CSF) p-tau181 distinguished AD from RPD (p < 0.001) but not controls from RPD (p > 0.05). The correlation of CSF t-tau with plasma BD-tau was stronger (r = 0.78, p < 0.001) than the correlation of CSF and plasma p-tau181 (r = 0.26, p = 0.04). The ratio BD-tau/p-tau181 performed equivalently to the CSF t-tau/p-tau181 ratio, differentiating AD from CJD (p < 0.0001). DISCUSSION: Plasma BD-tau and p-tau181 mimic their corresponding cerebrospinal fluid (CSF) markers. P-tau significantly increased in AD but not in RPD. Plasma BD-tau, like CSF t-tau, increases according to neurodegeneration intensity.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Creutzfeldt-Jakob , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Encéfalo , Biomarcadores/líquido cefalorraquídeo , Diagnóstico Diferencial , Péptidos beta-Amiloides/líquido cefalorraquídeo
19.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37920945

RESUMEN

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Proteínas tau , Estudios Transversales , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones
20.
Alzheimers Dement ; 20(2): 1284-1297, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985230

RESUMEN

INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aß42, Aß40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI ) and between-subject (CVG ) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG . Aß42/Aß40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aß42/Aß40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Progresión de la Enfermedad , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...