Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1128641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936969

RESUMEN

Background: Almost half of severe hemophilia A (HA) is caused by an intron 22 inversion mutation (Int22Inv), which disrupts the 26-exon F8 gene. Inverted F8 mRNA exons 1-22 are transcribed, while F8B mRNA, containing F8 exons 23-26, is transcribed from a promoter within intron 22. Neither FVIII activity nor FVIII antigen (cross-reacting material, CRM) are detectable in plasma of patients with an intron-22 inversion. Objectives: To test the hypothesis that (putative) intracellular synthesis of FVIII proteins encoded by inverted F8 and F8B mRNAs confers T-cell tolerance to almost the entire FVIII sequence, and to evaluate the immunogenicity of the region encoded by the F8 exon 22-23 junction sequence. Patients/Methods: Peripheral blood mononuclear cells (PBMCs) from 30 severe or moderate HA subjects (17 with an Int22Inv mutation) were tested by ELISPOT assays to detect cytokine secretion in response to FVIII proteins and peptides and to map immunodominant T-cell epitopes. Potential immunogenicity of FVIII sequences encoded by the F8 exon 22-23 junction region was also tested using peptide-MHCII binding assays. Results: Eight of the Int22Inv subjects showed robust cytokine secretion from PBMCs stimulated with FVIII proteins and/or peptides, consistent with earlier publications from the Conti-Fine group. Peptide ELISPOT assays identified immunogenic regions of FVIII. Specificity for sequences encoded within F8 mRNA exons 1-22 and F8B mRNA was confirmed by staining Int22Inv CD4+ T cells with peptide-loaded HLA-Class II tetramers. FVIII peptides spanning the F8 exon 22-23 junction (encoding M2124-V2125) showed limited binding to MHCII proteins and low immunogenicity, with cytokine secretion from only one Int22Inv subject. Conclusions: PBMCs from multiple subjects with an Int22Inv mutation, with and without a current FVIII inhibitor, responded to FVIII epitopes. Furthermore, the FVIII region encoded by the exon 22-23 junction sequence was not remarkably immunoreactive and is therefore unlikely to contain an immunodominant, promiscuous CD4+ T-cell epitope. Our results indicate that putative intracellular expression of partial FVIII proteins does not confer T-cell tolerance to FVIII regions encoded by inverted F8 mRNA or F8B mRNA.


Asunto(s)
Hemofilia A , Humanos , Factor VIII , Intrones/genética , Leucocitos Mononucleares , Mutación , Péptidos/genética , Epítopos de Linfocito T/genética , Inversión Cromosómica , Linfocitos T CD4-Positivos , ARN Mensajero/genética , Citocinas/genética
2.
Hum Vaccin Immunother ; 18(5): 2048622, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35348437

RESUMEN

We report a Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2 RγcKO.NOD) for COVID-19 research. DRAGA mice express transgenically HLA-class I and class-II molecules in the mouse thymus to promote human T cell development and human B cell Ig-class switching. When infused with human hematopoietic stem cells from cord blood reconstitute a functional human immune system, as well as human epi/endothelial cells in lung and upper respiratory airways expressing the human ACE2 receptor for SARS-CoV-2. The DRAGA mice were able to sustain SARS-CoV-2 infection for at least 25 days. Infected mice showed replicating virus in the lungs, deteriorating clinical condition, and human-like lung immunopathology including human lymphocyte infiltrates, microthrombi and pulmonary sequelae. Among the intra-alveolar and peri-bronchiolar lymphocyte infiltrates, human lung-resident (CD103+) CD8+ and CD4+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, suggesting anti-viral cytotoxic activity. Infected mice also mounted human IgG antibody responses to SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathological mechanisms and testing the safety and efficacy of candidate vaccines and therapeutics.


Asunto(s)
COVID-19 , Antígeno HLA-DR4 , Animales , Linfocitos B , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Células Endoteliales , Antígeno HLA-A2/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , SARS-CoV-2
3.
bioRxiv ; 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32839773

RESUMEN

We report the first Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2RγcKO.NOD) for COVID-19 research. This mouse is reconstituted with human cord blood-derived, HLA-matched hematopoietic stem cells. It engrafts human epi/endothelial cells expressing the human ACE2 receptor for SARS-CoV-2 and TMPRSS2 serine protease co-localized on lung epithelia. HIS-DRAGA mice sustained SARS-CoV-2 infection, showing deteriorated clinical condition, replicating virus in the lungs, and human-like lung immunopathology including T-cell infiltrates, microthrombi and pulmonary sequelae. Among T-cell infiltrates, lung-resident (CD103+) CD8+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, indicating cytotoxic potential. Infected mice also developed antibodies against the SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathology and for testing the safety and efficacy of candidate vaccines and therapeutics.

4.
Front Immunol ; 11: 1219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595650

RESUMEN

Formation of pathological anti-FVIII antibodies, or "inhibitors," is the most serious complication of therapeutic FVIII infusions, affecting up to 1/3 of severe Hemophilia A (HA) patients. Inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development vs. immune tolerance, achieved with or without Immune Tolerance Induction (ITI) therapy, are not well-understood. To address these questions, temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) was carried out for HA subjects with and without a current or historic inhibitor using RNA-Seq. PBMCs were isolated from 40 subjects in the following groups: HA with an inhibitor that resolved either following ITI or spontaneously; HA with a current inhibitor; HA with no inhibitor history and non-HA controls. PBMCs were stimulated with 5 nM FVIII and RNA was isolated 4, 16, 24, and 48 h following stimulation. Time-series differential expression analysis was performed and distinct transcriptional signatures were identified for each group, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. Subjects with a current inhibitor showed differential expression of 56 genes and a clustering analysis identified three major temporal profiles. Interestingly, gene ontology enrichments featured innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A, and COLEC12. NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1ß and TNFα, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. RNA-Seq results were validated by RT-qPCR, ELISAs, multiplex cytokine analysis, and flow cytometry. The inflammatory status of HA patients suffering from an ongoing inhibitor includes up-regulated innate immune modulators, which may act as ongoing danger signals that influence the responses to, and eventual outcomes of, ITI therapy.


Asunto(s)
Factor VIII/inmunología , Factor VIII/uso terapéutico , Hemofilia A/tratamiento farmacológico , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Autoanticuerpos/inmunología , Niño , Preescolar , Femenino , Hemofilia A/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Transcriptoma , Adulto Joven
5.
Eur J Immunol ; 47(9): 1513-1524, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28665005

RESUMEN

We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4+ T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4+ T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4+ T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4+ T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4+ T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4+ T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-9/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Receptor Toll-Like 2/metabolismo , Aciltransferasas/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Interferón gamma/metabolismo , Interleucina-9/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Receptor Toll-Like 2/inmunología , Transactivadores/metabolismo , Transcriptoma
6.
J Biol Chem ; 286(46): 40307-19, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21953458

RESUMEN

Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Familia-src Quinasas/metabolismo , Autofagia , Línea Celular , Humanos , Macrófagos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...