Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biomedicines ; 10(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35884802

RESUMEN

Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.

2.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L507-L517, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873929

RESUMEN

Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA-encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high-altitude pulmonary edema, and bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.


Asunto(s)
Enfermedades Pulmonares , Ribosomas Mitocondriales , Humanos , Enfermedades Pulmonares/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas
3.
3 Biotech ; 10(10): 436, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32999813

RESUMEN

Glycosyltransferases (GTs) are widely present in several organisms. These enzymes specifically transfer sugar moieties to a range of substrates. The processes of bacterial glycosylation of the cell wall and their relations with host-pathogen interactions have been studied extensively, yet the majority of mycobacterial GTs involved in the cell wall synthesis remain poorly characterized. Glycopeptidolipids (GPLs) are major class of glycolipids present on the cell wall of various mycobacterial species. They play an important role in drug resistance and host-pathogen interaction virulence. Gtf3 enzyme performs a key step in the biosynthesis of triglycosylated GPLs. Here, we describe a general procedure to achieve expression, purification, and crystallization of recombinant protein Gtf3 from Mycobacterium smegmatis using an E. coli expression system. We reported also a combined bioinformatics and biochemical methods to predict aggregation propensity and improve protein solubilization of recombinant Gtf3. NVoy, a carbohydrate-based polymer reagent, was added to prevent protein aggregation by binding to hydrophobic protein surfaces of Gtf3. Using intrinsic tryptophan fluorescence quenching experiments, we also demonstrated that Gtf3-NVoy enzyme interacted with TDP and UDP nucleotide ligands. This case report proposes useful tools for the study of other glycosyltransferases which are rather difficult to characterize and crystallize.

4.
Cell Death Dis ; 10(9): 638, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31474749

RESUMEN

DJ-1 is a multifunctional protein with cytoprotective functions. It is localized in the cytoplasm, nucleus, and mitochondria. The conserved cysteine residue at position 106 (Cys106) within DJ-1 serves as a sensor of redox state and can be oxidized to both the sulfinate (-SO2-) and sulfonate (-SO3-) forms. DJ-1 with Cys106-SO2- has cytoprotective activity but high levels of reactive oxygen species can induce its overoxidation to Cys106-SO3-. We found increased oxidative stress in alveolar type II (ATII) cells isolated from emphysema patients as determined by 4-HNE expression. DJ-1 with Cys106-SO3- was detected in these cells by mass spectrometry analysis. Moreover, ubiquitination of Cys106-SO3- DJ-1 was identified, which suggests that this oxidized isoform is targeted for proteasomal destruction. Furthermore, we performed controlled oxidation using H2O2 in A549 cells with DJ-1 knockout generated using CRISPR-Cas9 strategy. Lack of DJ-1 sensitized cells to apoptosis induced by H2O2 as detected using Annexin V and propidium iodide by flow cytometry analysis. This treatment also decreased both mitochondrial DNA amount and mitochondrial ND1 (NADH dehydrogenase 1, subunit 1) gene expression, as well as increased mitochondrial DNA damage. Consistent with the decreased cytoprotective function of overoxidized DJ-1, recombinant Cys106-SO3- DJ-1 exhibited a loss of its thermal unfolding transition, mild diminution of secondary structure in CD spectroscopy, and an increase in picosecond-nanosecond timescale dynamics as determined using NMR. Altogether, our data indicate that very high oxidative stress in ATII cells in emphysema patients induces DJ-1 overoxidation to the Cys106-SO3- form, leading to increased protein flexibility and loss of its cytoprotective function, which may contribute to this disease pathogenesis.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Cisteína/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Anciano , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Estrés Oxidativo/fisiología , Transfección
5.
EBioMedicine ; 46: 305-316, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31383554

RESUMEN

BACKGROUND: Cigarette smoke is the main risk factor of pulmonary emphysema development, which is characterized by alveolar wall destruction. Mitochondria are important for alveolar type II (ATII) cell metabolism due to ATP generation. METHODS: We isolated ATII cells from control non-smoker and smoker organ donors, and after lung transplant of patients with emphysema to determine mitochondrial function, dynamics and mitochondrial (mt) DNA damage. FINDINGS: We found high mitochondrial superoxide generation and mtDNA damage in ATII cells in emphysema. This correlated with decreased mtDNA amount. We also detected high TOP1-cc and low TDP1 levels in mitochondria in ATII cells in emphysema. This contributed to the decreased resolution of TOP1-cc leading to accumulation of mtDNA damage and mitochondrial dysfunction. Moreover, we used lung tissue obtained from areas with mild and severe emphysema from the same patients. We found a correlation between the impaired fusion and fission as indicated by low MFN1, OPA1, FIS1, and p-DRP1 levels and this disease severity. We detected lower TDP1 expression in severe compared to mild emphysema. INTERPRETATION: We found high DNA damage and impairment of DNA damage repair in mitochondria in ATII cells isolated from emphysema patients, which contribute to abnormal mitochondrial dynamics. Our findings provide molecular mechanisms of mitochondrial dysfunction in this disease. FUND: This work was supported by National Institutes of Health (NIH) grant R01 HL118171 (B.K.) and the Catalyst Award from the American Lung Association (K.B.).


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Mitocondrias/metabolismo , Enfisema Pulmonar/etiología , Enfisema Pulmonar/metabolismo , Adenosina Trifosfato/biosíntesis , Daño del ADN , ADN Mitocondrial , Progresión de la Enfermedad , Metabolismo Energético , Humanos , Mitocondrias/genética , Estrés Oxidativo , Hidrolasas Diéster Fosfóricas/metabolismo , Transporte de Proteínas , Enfisema Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Superóxidos/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L475-L485, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313616

RESUMEN

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Interleucina-8/genética , Nicotina/farmacología , Proteína Desglicasa DJ-1/genética , Aerosoles , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calcio/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-8/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Proteína Desglicasa DJ-1/deficiencia , Proteína Desglicasa DJ-1/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Superóxidos/metabolismo
7.
J Biol Chem ; 293(35): 13604-13615, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30006346

RESUMEN

Human mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are key enzymes in the mitochondrial protein translation system and catalyze the charging of amino acids on their cognate tRNAs. Mutations in their nuclear genes are associated with pathologies having a broad spectrum of clinical phenotypes, but with no clear molecular mechanism(s). For example, mutations in the nuclear genes encoding mt-AspRS and mt-ArgRS are correlated with the moderate neurodegenerative disorder leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) and with the severe neurodevelopmental disorder pontocerebellar hypoplasia type 6 (PCH6), respectively. Previous studies have shown no or only minor impacts of these mutations on the canonical properties of these enzymes, indicating that the role of the mt-aaRSs in protein synthesis is mostly not affected by these mutations, but their effects on the mitochondrial localizations of aaRSs remain unclear. Here, we demonstrate that three human aaRSs, mt-AspRS, mt-ArgRS, and LysRS, each have a specific sub-mitochondrial distribution, with mt-ArgRS being exclusively localized in the membrane, LysRS exclusively in the soluble fraction, and mt-AspRS being present in both. Chemical treatments revealed that mt-AspRs is anchored in the mitochondrial membrane through electrostatic interactions, whereas mt-ArgRS uses hydrophobic interactions. We also report that novel mutations in mt-AspRS and mt-ArgRS genes from individuals with LBSL and PCH6, respectively, had no significant impact on the mitochondrial localizations of mt-AspRS and mt-ArgRS. The variable sub-mitochondrial locations for these three mt-aaRSs strongly suggest the existence of additional enzyme properties, requiring further investigation to unravel the mechanisms underlying the two neurodegenerative disorders.


Asunto(s)
Arginino-ARNt Ligasa/análisis , Aspartato-ARNt Ligasa/análisis , Lisina-ARNt Ligasa/análisis , Mitocondrias/química , Arginino-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/genética , Femenino , Células HEK293 , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Lisina-ARNt Ligasa/genética , Mitocondrias/genética , Mitocondrias/patología , Mutación , Atrofias Olivopontocerebelosas/genética , Atrofias Olivopontocerebelosas/patología
8.
Methods ; 113: 111-119, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27793688

RESUMEN

Human mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are encoded in the nucleus, synthesized in the cytosol and targeted for importation into mitochondria by a N-terminal mitochondrial targeting sequence. This targeting sequence is presumably cleaved upon entry into the mitochondria, following a process still not fully deciphered in human, despite essential roles for the mitochondrial biogenesis. Maturation processes are indeed essential both for the release of a functional enzyme and to route correctly the protein within mitochondria. The absence of consensus sequences for cleavage sites and the discovery of possible multiple proteolytic steps render predictions of N-termini difficult. Further, the knowledge of the cleavages is key for the design of protein constructions compatible with efficient production in bacterial strains. Finally, full comprehension becomes essential because a growing number of mutations are found in genes coding for mt-aaRS. In the present study, we take advantage of proteomic methodological developments and identified, in mitochondria, three N-termini for the human mitochondrial aspartyl-tRNA synthetase. This first description of the co-existence of different forms opens new perspectives in the biological understanding of this enzyme. Those methods are extended to the whole set of human mt-aaRSs and methodological advice are provided for further investigations.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Núcleo Celular/enzimología , Citosol/enzimología , Mitocondrias/enzimología , Precursores de Proteínas/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Fraccionamiento Celular/métodos , Línea Celular Tumoral , Núcleo Celular/genética , Citosol/química , Células HEK293 , Humanos , Mitocondrias/genética , Monocitos/citología , Monocitos/enzimología , Fragmentos de Péptidos/análisis , Biosíntesis de Proteínas , Precursores de Proteínas/clasificación , Precursores de Proteínas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteómica/instrumentación
9.
Sci Rep ; 5: 17332, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620921

RESUMEN

Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Leucoencefalopatías/enzimología , Proteínas Mitocondriales/metabolismo , Mutación , Animales , Aspartato-ARNt Ligasa/genética , Línea Celular , Cricetinae , Estabilidad de Enzimas/genética , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Proteínas Mitocondriales/genética
10.
Biochimie ; 100: 95-106, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440477

RESUMEN

Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Genoma Mitocondrial , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Adenosina Trifosfato/biosíntesis , Alveolados/genética , Alveolados/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Codón , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo
11.
Mol Pharm ; 9(12): 3464-75, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23148419

RESUMEN

siRNAs are usually formulated with cationic polymers or lipids to form supramolecular particles capable of binding and crossing the negatively charged cell membrane. However, particles hardly diffuse through tissues when administered in vivo. We therefore are developing cationic siRNAs, composed of an antisense sequence annealed to an oligophosphospermine-conjugated sense strand. Cationic siRNAs have been previously shown to display gene silencing activity in human cell line (Nothisen et al. J. Am. Chem. Soc.2009). We have improved the synthesis, purification and characterization of oligospermine-oligoribonucleotide conjugates which provide cationic siRNAs with enhanced biological activity. We show data supporting their carrier-free intracellular delivery in a molecular, soluble state. Additional results on the relationship between global charge, uptake and silencing activity confirm the requirement for an overall positive charge of the conjugated siRNA in order to enter cells. Importantly, conjugated siRNAs made of natural phosphodiester nucleotides are protected from nuclease degradation by the oligophosphospermine moiety, operate through the RNAi mechanism and mediate specific gene silencing at submicromolar concentration in the presence of serum.


Asunto(s)
Sistemas de Liberación de Medicamentos , Silenciador del Gen , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Espermina/metabolismo , Animales , Western Blotting , Citometría de Flujo , Células HeLa , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Luciferasas/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Fosforilación , ARN Mensajero/genética , ARN Interferente Pequeño/administración & dosificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espermina/química , Survivin , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA