Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccine ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897895

RESUMEN

Meningococcal disease is caused by Neisseria meningitidis or meningococcus. Every year globally around 1.2 million people are affected and approximately 120,000 deaths occur due to meningitis. The disease can be prevented by a single dose of meningococcal vaccine. We carried out a randomized observer-blinded non-inferiority trial to evaluate and compare the immunogenicity and safety of a local meningococcal polysaccharide vaccine 'Ingovax ACWY' (test) with Quadri MeningoTM (comparator), an approved meningococcal polysaccharide vaccine in India. A total of 88 healthy adults (18-45 years old) were randomized at a 1:1 ratio in two vaccine groups receiving a single dose vaccine subcutaneously. All participants were followed until three months post-vaccination. Blood for clinical parameters (hematology and biochemistry) and serum bactericidal assay (SBA) was collected prior to vaccination and one-month post-vaccination. Solicited adverse events (AEs) were assessed up to 6 days following vaccination and unsolicited AEs were monitored throughout the follow-up period. There was no significant difference in rates of AE between the two groups. The commonest solicited AE was injection site pain. No serious AEs were reported. There was no significant difference (p<0.05) in seroconversion rate as well as pre and post-vaccination SBA geometric mean titers (GMT)between test and comparator vaccine. The post-vaccination GMT ratio (GMR) of the test and comparator vaccine was found to be 0.9, 1, 1.29, and 0.85 for serogroup A, C, W135, and Y respectively. For all the serogroups, lower limit of 95% CI of the GMR was found to be greater than the pre-defined 0.5 non-inferiority margin suggesting that Ingovax ACWY is similar to Quadri MeningoTM vaccine. We observed the immunogenicity and safety of Ingovax ACWY is non-inferior to comparator vaccine. The development of facilities for manufacturing polysaccharide ACWY vaccines locally will further lead to capacity building in the field of vaccines for Bangladesh.

2.
Vaccine ; 40(4): 640-649, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34969541

RESUMEN

Bangladesh remains cholera endemic with biannual seasonal peaks causing epidemics. At least 300,000 severe cases and over 4,500 deaths occur each year. The available oral cholera vaccineshave not yet been adopted for cholera control in Bangladesh due to insufficient number of doses available for endemic control. With a public private partnership, icddr,b initiated a collaboration between vaccine manufacturers in Bangladesh and abroad. A locally manufactured Oral Cholera Vaccine (OCV) named Cholvax became available for testing in Bangladesh. We evaluated the safety and immunogenicity of this locally produced Cholvax (Incepta Vaccine Ltd) inexpensive OCV comparatively to Shanchol (Shantha Biotechnics-Sanofi Pasteur) which is licensed in several countries. We conducted a randomized non-inferiority clinical trial of bivalent, killed oral whole-cell cholera vaccine Cholvax vs. Shanchol in the cholera-endemic area of Mirpur, Dhaka, among three different age cohorts (1-5, 6-17 and 18-45 years) between April 2016 and April 2017. Two vaccine doses were given at 14 days apart to 2,052 healthy participants. No vaccine-related serious adverse events were reported. There were no significant differences in the frequency of solicited (7.31% vs. 6.73%) and unsolicited (1.46% vs. 1.07%) adverse events reported between the Cholvax and Shanchol groups. Vibriocidal antibody responses among the overall population for O1 Ogawa (81% vs. 77%) and O1 Inaba (83% vs. 84%) serotypes showed that Cholvax was non-inferior to Shanchol, with the non-inferiority margin of -10%. For O1 Inaba, GMT was 462.60 (Test group), 450.84 (Comparator group) with GMR 1.02(95% CI: 0.92, 1.13). For O1 Ogawa, GMT was 419.64 (Test group), 387.22 (Comparator group) with GMR 1.12 (95% CI: 1.02, 1.23). Cholvax was safe and non-inferior to Shanchol in terms of immunogenicity in the different age groups. These results support public use of Cholvax to contribute for reduction of the cholera burden in Bangladesh. ClinicalTrials.gov number: NCT027425581.


Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae O1 , Administración Oral , Anticuerpos Antibacterianos , Bangladesh/epidemiología , Cólera/epidemiología , Cólera/prevención & control , Humanos , Lactante , Vacunas de Productos Inactivados/efectos adversos
3.
Vaccine ; 39(43): 6385-6390, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34561142

RESUMEN

Worldwide Hepatitis B is known as one of the imperative causes of mortality and morbidity as well as occupational health hazard among health workers. Bangladesh is intermediate endemic country for Hepatitis B infection for which the government has introduced hepatitis B vaccination into the Expanded Programme on Immunization (EPI) nationwide since 2009 for new born children. However, the people who were born before 2009, was dependent on imported hepatitis B vaccine as there was no locally manufactured hepatitis B vaccine in Bangladesh. Hence, we conducted a randomized observer blinded non-inferiority clinical trial to assess the immunogenicity and safety of the locally manufactured Hepa-B vaccine in comparison with World Health Organization prequalified Engerix-B vaccine. Total 158 eligible adult participants were enrolled in this study with mean age of 30 and 29 years old in Hepa-B and Engerix-B groups, respectively. Both the vaccines were administered intramuscularly at 0, 1 and 6 months schedule. Baseline and post vaccination anti-HBs titers were measure at different time points. Seroconversion rate post three doses of Hepa-B vaccine was 98.67% similar to the comparator Engerix-B vaccine which was 100%. The geometric mean test ratios of both vaccines at all analysis time points were found > 0.5 predefined non-inferiority margin. Soreness at the injection site was the most common symptom for both the vaccines which resolved without any complication. No serious adverse event was reported throughout the study period. These results suggest that locally manufactured hepatitis B vaccine 'Hepa-B' vaccine is non-inferior to the well-known licensed 'Engerix-B' vaccine. ClinicalTrials.gov NCT03627507.


Asunto(s)
Vacunas contra Hepatitis B , Hepatitis B , Adulto , Bangladesh , Hepatitis B/prevención & control , Anticuerpos contra la Hepatitis B/sangre , Humanos , Vacunas Sintéticas
4.
Vaccine ; 38(50): 7998-8009, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33139137

RESUMEN

Cholera remains an important global health problem with up to 4 million cases and 140,000 deaths annually. Oral cholera vaccines (OCVs) are now a cornerstone of the WHOs "Ending Cholera - A Global Roadmap to 2030" global program for the eventual elimination of cholera. There are currently three WHO prequalified OCVs available, Dukoral®, Shanchol® and Euvichol-Plus®. These vaccines are effective but due to a multiple strain composition and two different methods of inactivation, are complex and costly to manufacture. We describe here the characterization and industrial scale development of Hillchol®; a novel, likely affordable single-component OCV for low and middle-income countries. Hillchol® consists of formalin-inactivated bacteria of a stable recombinant Vibrio cholerae O1 El Tor Hikojima serotype strain expressing approximately 50% each of Ogawa and Inaba O1 LPS antigens. The novel OCV can be manufactured on an industrial scale at a low cost. Hillchol® was well tolerated in animal toxicology studies and shown to have non-inferior oral immunogenicity in mice for both intestinal-mucosal and serological immune responses when compared with a WHO-prequalified OCV. The optimized production of this single component OCV will reduce cost of OCV production and thus substantially increase vaccine availability. Based on these results, Hillchol® has been produced at a GMP facility and used successfully for clinical phase I/II studies.


Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae O1 , Administración Oral , Animales , Anticuerpos Antibacterianos , Cólera/prevención & control , Ratones , Serogrupo , Vacunas de Productos Inactivados , Vibrio cholerae O1/genética
5.
Cytokine ; 136: 155228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822911

RESUMEN

The COVID-19 pandemic has led to twin public health and economic crises around the world. Not only has it cost hundreds of thousands of lives but also severely impacted livelihoods and placed enormous strain on community healthcare and welfare services. In this review, we explore the events associated with SARS-CoV-2 pathogenesis and host immunopathological reactivity due to the clinical manifestations of this coronavirus infection. We discuss that the metallopeptidase enzyme ADAM17, also known as tumor necrosis factor-α-converting enzyme, TACE, is responsible for shedding of angiotensin-converting enzyme 2 and membrane-bound interleukin (IL)-6 receptor. This leads to elevated pro-inflammatory responses that result in cytokine storm syndrome. We argue that cytokine balance may be restored by recovering an IL-6 trans-signaling neutralizing buffer system through the mediation of recombinant soluble glycoprotein 130 and recombinant ADAM17/TACE prodomain inhibitor. This cytokine restoration, possibly combined with inhibition of SARS-CoV-2 entry as well as replication and coagulopathy, could be introduced as a novel approach to treat patients with severe COVID-19. In cases of co-morbidity, therapies related to the management of associated disease conditions could ameliorate those clinical manifestations.


Asunto(s)
Betacoronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , COVID-19 , Infecciones por Coronavirus/complicaciones , Quimioterapia Combinada , Humanos , Modelos Biológicos , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2
6.
Infection ; 46(1): 15-24, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29047020

RESUMEN

BACKGROUND: Rotavirus is the major cause of gastroenteritis in children throughout the world. Every year, a large number of children aged < 5 years die from rotavirus-related diarrhoeal diseases. Though these infections are vaccine-preventable, the vast majority of children in low-income countries suffer from the infection. The situation leads to severe economic loss and constitutes a major public health problem. METHODS: We searched electronic databases including PubMed and Google scholar using the following words: "features of rotavirus," "epidemiology of rotavirus," "rotavirus serotypes," "rotavirus in Bangladesh," "disease burden of rotavirus," "rotavirus vaccine," "low efficacy of rotavirus vaccine," "inactivated rotavirus vaccine". Publications until July 2017 have been considered for this work. RESULTS AND CONCLUSION: Currently, two live attenuated vaccines are available throughout the world. Many countries have included rotavirus vaccines in national immunization program to reduce the disease burden. However, due to low efficacy of the available vaccines, satisfactory outcome has not yet been achieved in developing countries such as Bangladesh. Poor economic, public health, treatment, and sanitation status of the low-income countries necessitate the need for the most effective rotavirus vaccines. Therefore, the present scenario demands the development of a highly effective rotavirus vaccine. In this regard, inactivated rotavirus vaccine concept holds much promise for reducing the current disease burden. Recent advancements in developing an inactivated rotavirus vaccine indicate a significant progress towards disease prophylaxis and control.


Asunto(s)
Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/análisis , Rotavirus/fisiología , Adolescente , Bangladesh/epidemiología , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Rotavirus/inmunología , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología
7.
Int J Anal Chem ; 2016: 9404068, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688770

RESUMEN

Molecular size distribution of meningococcal polysaccharide vaccine is a readily identifiable parameter that directly correlates with the immunogenicity. In this paper, we report a size exclusion chromatography method to determine the molecular size distribution and distribution coefficient value of meningococcal polysaccharide serogroups A, C, W, and Y in meningococcal polysaccharide (ACWY) vaccines. The analyses were performed on a XK16/70 column packed with sepharose CL-4B with six different batches of Ingovax® ACWY, a meningococcal polysaccharide vaccine produced by Incepta Vaccine Ltd., Bangladesh. A quantitative rocket immunoelectrophoresis assay was employed to determine the polysaccharide contents of each serogroup. The calculated distribution coefficient values of serogroups A, C, W, and Y were found to be 0.26 ± 0.16, 0.21 ± 0.11, 0.21 ± 0.11, and 0.14 ± 0.12, respectively, and met the requirements of British Pharmacopeia. The method was proved to be robust for determining the distribution coefficient values which is an obligatory requirement for vaccine lot release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...