Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nucl Med ; 65(6): 956-961, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38604762

RESUMEN

Molecular imaging of brain vesicular acetylcholine transporter provides a biomarker to explore cholinergic systems in humans. We aimed to characterize the distribution of, and optimize methods to quantify, the vesicular acetylcholine transporter-specific tracer (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) in the brain using PET. Methods: Fifty-two healthy participants aged 21-97 y had brain PET with [18F]VAT. [3H]VAT autoradiography identified brain areas devoid of specific binding in cortical white matter. PET image-based white matter reference region size, model start time, and duration were optimized for calculations of Logan nondisplaceable binding potential (BPND). Ten participants had 2 scans to determine test-retest variability. Finally, we analyzed age-dependent differences in participants. Results: [18F]VAT was widely distributed in the brain, with high striatal, thalamic, amygdala, hippocampal, cerebellar vermis, and regionally specific uptake in the cerebral cortex. [3H]VAT autoradiography-specific binding and PET [18F]VAT uptake were low in white matter. [18F]VAT SUVs in the white matter reference region correlated with age, requiring stringent erosion parameters. Logan BPND estimates stabilized using at least 40 min of data starting 25 min after injection. Test-retest variability had excellent reproducibility and reliability in repeat BPND calculations for 10 participants (putamen, 6.8%; r > 0.93). We observed age-dependent decreases in the caudate and putamen (multiple comparisons corrected) and in numerous cortical regions. Finally, we provide power tables to indicate potential mean differences that can be detected between 2 groups of participants. Conclusion: These results validate a reference region for BPND calculations and demonstrate the viability, reproducibility, and utility of using the [18F]VAT tracer in humans to quantify cholinergic pathways.


Asunto(s)
Encéfalo , Piperidinas , Tomografía de Emisión de Positrones , Humanos , Adulto , Persona de Mediana Edad , Anciano , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Femenino , Reproducibilidad de los Resultados , Adulto Joven , Anciano de 80 o más Años , Piperidinas/farmacocinética , Piperidinas/metabolismo , Envejecimiento/metabolismo , Radiofármacos/farmacocinética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
2.
Mov Disord ; 36(3): 662-671, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33211330

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS: We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS: Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION: Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Globo Pálido , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia
3.
Neurology ; 95(16): e2246-e2258, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32913023

RESUMEN

OBJECTIVE: To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls. METHODS: Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences. RESULTS: Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups. CONCLUSION: Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Distónicos/fisiopatología , Adulto , Anciano , Mapeo Encefálico , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología
4.
PLoS One ; 13(9): e0202201, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30183721

RESUMEN

OBJECTIVE: Interpretation of diffusion MRI in the living brain requires validation against gold standard histological measures. We compared diffusion values of the nigrostriatal tract to PET and histological results in non-human primates (NHPs) with varying degrees of unilateral nigrostriatal injury induced by MPTP, a toxin selective for dopaminergic neurons. METHODS: Sixteen NHPs had MRI and PET scans of three different presynaptic radioligands and blinded video-based motor ratings before and after unilateral carotid artery infusion of variable doses of MPTP. Diffusion measures of connections between midbrain and striatum were calculated. Then animals were euthanized to quantify striatal dopamine concentration, stereologic measures of striatal tyrosine hydroxylase (TH) immunostained fiber density and unbiased stereologic counts of TH stained nigral cells. RESULTS: Diffusion measures correlated with MPTP dose, nigral TH-positive cell bodies and striatal TH-positive fiber density but did not correlate with in vitro nigrostriatal terminal field measures or in vivo PET measures of striatal uptake of presynaptic markers. Once nigral TH cell count loss exceeded 50% the stereologic terminal field measures reached a near zero floor effect but the diffusion measures continued to correlate with nigral cell counts. CONCLUSION: Diffusion measures in the nigrostriatal tract correlate with nigral dopamine neurons and striatal fiber density, but have the same relationship to terminal field measures as a previous report of striatal PET measures of presynaptic neurons. These diffusion measures have the potential to act as non-invasive index of the severity of nigrostriatal injury. Diffusion imaging of the nigrostriatal tract could potentially have diagnostic value in humans with Parkinson disease or related disorders.


Asunto(s)
Cuerpo Estriado/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/diagnóstico por imagen , Animales , Cuerpo Estriado/citología , Modelos Animales de Enfermedad , Humanos , Intoxicación por MPTP/diagnóstico por imagen , Intoxicación por MPTP/patología , Macaca , Masculino , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Sustancia Negra/citología , Tirosina 3-Monooxigenasa/metabolismo
5.
Am J Nucl Med Mol Imaging ; 6(6): 301-309, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28078183

RESUMEN

[18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

6.
EJNMMI Res ; 5(1): 73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26660544

RESUMEN

BACKGROUND: The objective of this study is to determine the radiation dosimetry of a novel radiotracer for vesicular acetylcholine transporter (-)-(1-((2R,3R)-8-(2-[(18)F]fluoro-ethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone ([(18)F]VAT) based on PET imaging in nonhuman primates. [(18)F]VAT has potential for investigation of neurological disorders including Alzheimer's disease, Parkinson's disease, and dystonia. METHODS: Three macaque fascicularis (two males, one female) received 185.4-198.3 MBq [(18)F]VAT prior to whole-body imaging in a MicroPET-F220 scanner. Time activity curves (TACs) were created from regions of interest (ROIs) that encompassed the entire small organs or samples with the highest activity within large organs. Organ residence times were calculated based on the TACs. We then used OLINDA/EXM 1.1 to calculate human radiation dose estimates based on scaled organ residence times. RESULTS: Measurements from directly sampled arterial blood yielded a residence time of 0.30 h in agreement with the residence time of 0.39 h calculated from a PET-generated time activity curve measured in the left ventricle. Organ dosimetry revealed the liver as the critical organ (51.1 and 65.4 µGy/MBq) and an effective dose of 16 and 19 µSv/MBq for male and female, respectively. CONCLUSIONS: The macaque biodistribution data showed high retention of [(18)F]VAT in the liver consistent with hepatobiliary clearance. These dosimetry data support that relatively safe doses of [(18)F]VAT can be administered to obtain imaging in humans.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25713747

RESUMEN

BACKGROUND: Dystonia constitutes a heterogeneous group of movement abnormalities, characterized by sustained or intermittent muscle contractions causing abnormal postures. Overwhelming data suggest involvement of basal ganglia and dopaminergic pathways in dystonia. In this review, we critically evaluate recent neuroimaging studies that investigate dopamine receptors, endogenous dopamine release, morphology of striatum, and structural or functional connectivity in cortico-basal ganglia-thalamo-cortical and related cerebellar circuits in dystonia. METHOD: A PubMed search was conducted in August 2014. RESULTS: Positron emission tomography (PET) imaging offers strong evidence for altered D2/D3 receptor binding and dopaminergic release in many forms of idiopathic dystonia. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data reveal likely involvement of related cerebello-thalamo-cortical and sensory-motor networks in addition to basal ganglia. DISCUSSION: PET imaging of dopamine receptors or transmitter release remains an effective means to investigate dopaminergic pathways, yet may miss factors affecting dopamine homeostasis and related subcellular signaling cascades that could alter the function of these pathways. fMRI and DTI methods may reveal functional or anatomical changes associated with dysfunction of dopamine-mediated pathways. Each of these methods can be used to monitor target engagement for potential new treatments. PET imaging of striatal phosphodiesterase and development of new selective PET radiotracers for dopamine D3-specific receptors and Mechanistic target of rampamycin (mTOR) are crucial to further investigate dopaminergic pathways. A multimodal approach may have the greatest potential, using PET to identify the sites of molecular pathology and magnetic resonance methods to determine their downstream effects.

8.
Front Pharmacol ; 6: 307, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779024

RESUMEN

OBJECTIVE: To compile a comprehensive summary of published human experience with levodopa given intravenously, with a focus on information required by regulatory agencies. BACKGROUND: While safe intravenous (IV) use of levodopa has been documented for over 50 years, regulatory supervision for pharmaceuticals given by a route other than that approved by the U.S. Food and Drug Administration (FDA) has become increasingly cautious. If delivering a drug by an alternate route raises the risk of adverse events, an investigational new drug (IND) application is required, including a comprehensive review of toxicity data. METHODS: Over 200 articles referring to IV levodopa were examined for details of administration, pharmacokinetics, benefit, and side effects. RESULTS: We identified 142 original reports describing IVLD use in humans, beginning with psychiatric research in 1959-1960 before the development of peripheral decarboxylase inhibitors. At least 2760 subjects have received IV levodopa, and reported outcomes include parkinsonian signs, sleep variables, hormone levels, hemodynamics, CSF amino acid composition, regional cerebral blood flow, cognition, perception and complex behavior. Mean pharmacokinetic variables were summarized for 49 healthy subjects and 190 with Parkinson's disease. Side effects were those expected from clinical experience with oral levodopa and dopamine agonists. No articles reported deaths or induction of psychosis. CONCLUSION: At least 2760 patients have received IV levodopa with a safety profile comparable to that seen with oral administration.

9.
Ann Neurol ; 76(3): 393-402, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043598

RESUMEN

OBJECTIVE: We evaluated the efficacy of the potent antioxidant C3 to salvage nigrostriatal neuronal function after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure in nonhuman primates. C3 is a first-in-class functionalized water-soluble fullerene that reduces oxygen radical species associated with neurodegeneration in in vitro studies. However, C3 has not been evaluated as a neuroprotective agent in a Parkinson model in vivo. METHODS: Macaque fascicularis monkeys were used in a double-blind, placebo-controlled study design. MPTP-lesioned primates were given systemic C3 (n = 8) or placebo (n = 7) for 2 months starting 1 week after MPTP. Outcomes included in vivo behavioral measures of motor parkinsonism using a validated nonhuman primate rating scale, kinematic analyses of peak upper extremity velocity, positron emission tomography imaging of 6-[(18) F]fluorodopa (FD; reflects dopa decarboxylase) and [(11) C]dihydrotetrabenazine (DTBZ; reflects vesicular monoamine transporter type 2), ex vivo quantification of striatal dopamine, and stereologic counts of tyrosine hydroxylase-immunostained neurons in substantia nigra. RESULTS: After 2 months, C3 -treated monkeys had significantly improved parkinsonian motor ratings, greater striatal FD and DTBZ uptake, and higher striatal dopamine levels. None of the C3 -treated animals developed any toxicity. INTERPRETATION: Systemic treatment with C3 reduced striatal injury and improved motor function despite administration after the MPTP injury process had begun. These data strongly support further development of C3 as a promising therapeutic agent for Parkinson disease.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ácidos Carboxílicos/farmacología , Neostriado/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Ácidos Carboxílicos/administración & dosificación , Modelos Animales de Enfermedad , Dopamina/metabolismo , Método Doble Ciego , Macaca fascicularis , Masculino , Neostriado/lesiones , Neostriado/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Placebos , Tomografía de Emisión de Positrones/métodos , Distribución Aleatoria , Sustancia Negra/efectos de los fármacos , Sustancia Negra/lesiones , Sustancia Negra/metabolismo , Resultado del Tratamiento
10.
Ann Neurol ; 76(2): 279-95, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24953991

RESUMEN

OBJECTIVE: We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3-dimensional brain region and to assign statistical significance after stringent type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS. METHODS: Fifty-one PD participants with STN DBS were evaluated off medication, with DBS off and during unilateral STN DBS with clinically optimized settings. Dependent variables included DBS-induced changes in Unified Parkinson Disease Rating Scale (UPDRS) subscores, kinematic measures of bradykinesia and rigidity, working memory, response inhibition, mood, anxiety, and akathisia. Weighted t tests at each voxel produced p images showing where DBS most significantly affected each dependent variable based on outcomes of participants with nearby DBS. Finally, a permutation test computed the probability that this p image indicated significantly different responses based on stimulation site. RESULTS: Most motor variables improved with DBS anywhere in the STN region, but several motor, cognitive, and affective responses significantly depended on precise location stimulated, with peak p values in superior STN/zona incerta (quantified bradykinesia), dorsal STN (mood, anxiety), and inferior STN/substantia nigra (UPDRS tremor, working memory). INTERPRETATION: Our method identified DBS-induced behavioral changes that depended significantly on DBS site. These results do not support complete functional segregation within STN, because movement improved with DBS throughout, and mood improved with dorsal STN DBS. Rather, findings support functional convergence of motor, cognitive, and limbic information in STN.


Asunto(s)
Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Resultado del Tratamiento
11.
Brain Res ; 1571: 49-60, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24845719

RESUMEN

A single unilateral intracarotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into non-human primates causes injury to the nigrostriatal pathway including nigral cell bodies, axons and striatal terminal fields. In this model, motor parkinsonism correlates well with the loss of nigral dopaminergic cell bodies but only correlates with in vitro measures of nigrostriatal terminal fields when nigral cell loss does not exceed 50%. The goals of this study are to determine the relationship of motor parkinsonism with the degree of injury to nigrostriatal axons, as reflected by in vitro fiber length density measures, and compare in vivo with in vitro measures of striatal terminal fields. We determined axon integrity by measuring fiber length density with tyrosine hydroxylase (TH) immunohistology and dopamine transporter (DAT) density with DAT immunohistology. We then calculated the terminal arbor size and compared these measures with previously published data of quantified in vivo positron emission tomography (PET) measures of presynaptic dopaminergic neurons, autoradiographic measures of DAT and vesicular monoamine transporter type 2 (VMAT2), striatal dopamine, nigral cell counts, and parkinsonian motor ratings in the same animals. Our data demonstrate that in vivo and in vitro measures of striatal terminal fields correlate with each other regardless of the method of measurement. PET-based in vivo striatal measures accurately reflect in vitro measures of DAT and VMAT2. Terminal arbor size and other terminal field measures correlate with nigral TH immunoreactive (TH-ir) cell counts only when nigral TH-ir cell loss does not exceed 50%. Fiber length density was the only striatal measure that linearly correlated with motor ratings (Spearman: r=-0.81, p<0.001, n=16).


Asunto(s)
Cuerpo Estriado/patología , Lateralidad Funcional/efectos de los fármacos , Neuronas/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Sustancia Negra/patología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Recuento de Células , Cromatografía Líquida de Alta Presión , Cocaína/análogos & derivados , Cocaína/farmacocinética , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacocinética , Macaca , Masculino , Neuronas/metabolismo , Trastornos Parkinsonianos/diagnóstico por imagen , Tomografía de Emisión de Positrones , Unión Proteica/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
12.
Mov Disord ; 28(14): 2002-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24151192

RESUMEN

BACKGROUND: Multiple studies have demonstrated decreases in striatal D2-like (D2, D3) radioligand binding in primary focal dystonias. Although most investigations have focused on D2-specific receptors (D2R), a recent study suggests that the decreased D2-like binding may be due to a D3-specific (D3R) abnormality. However, only limited data exist on the role of D1-specific receptors (D1R) and the D1R-mediated pathways within basal ganglia in dystonia. Metabolic positron emission tomography (PET) data in primary generalized dystonia suggest resting state over activity in the D1R-mediated direct pathway, leading to excessive disinhibition of motor cortical areas. This work investigated whether striatal D1-like receptors are affected in primary focal dystonias. METHODS: Striatal-specific (caudate and putamen) binding of the D1-like radioligand [(11)C]NNC 112 was measured using PET in 19 patients with primary focal dystonia (cranial, cervical, or arm) and 18 controls. RESULTS: No statistically significant difference was detected in striatal D1-like binding between the two groups. The study had 91% power to detect a 20% difference, indicating that false-negative results were unlikely. CONCLUSIONS: Because [(11)C]NNC 112 has high affinity for D1-like receptors, very low affinity for D2-like receptors, and minimal sensitivity to endogenous dopamine levels, we conclude that D1-like receptor binding is not impaired in these primary focal dystonias.


Asunto(s)
Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Trastornos Distónicos/patología , Receptores de Dopamina D1/metabolismo , Adulto , Anciano , Benzazepinas/farmacocinética , Benzofuranos/farmacocinética , Trastornos Distónicos/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones
13.
Ann Neurol ; 74(4): 602-10, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23686841

RESUMEN

OBJECTIVE: Development of an effective therapy to slow the inexorable progression of Parkinson disease requires a reliable, objective measurement of disease severity. In the present study, we compare presynaptic positron emission tomography (PET) tracer uptake in the substantia nigra (SN) to cell loss and motor impairment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primates. METHODS: Presynaptic PET tracers 6-[(18)F]-fluorodopa (FD), [(11)C]-2ß-methoxy-3ß-4-fluorophenyltropane (CFT), and [(11)C]-dihydrotetrabenazine (DTBZ) were used to measure specific uptake in the SN and striatum before and after a variable dose of MPTP in nonhuman primates. These in vivo PET-based measures were compared with motor impairment, as well as postmortem tyrosine hydroxylase-positive cell counts and striatal dopamine concentration. RESULTS: We found the specific uptake of both CFT and DTBZ in the SN had a strong, significant correlation with dopaminergic cell counts in the SN (R(2) = 0.77, 0.53, respectively, p < 0.001), but uptake of FD did not. Additionally, both CFT and DTBZ specific uptake in the SN had a linear relationship with motor impairment (rs = -0.77, -0.71, respectively, p < 0.001), but FD uptake did not. INTERPRETATION: Our findings demonstrate that PET-measured binding potentials for CFT and DTBZ for a midbrain volume of interest targeted at the SN provide faithful correlates of nigral neuronal counts across a full range of lesion severity. Because these measures correlate with both nigral cell counts and parkinsonian ratings, we suggest that these SN PET measures are relevant biomarkers of nigrostriatal function.


Asunto(s)
Intoxicación por MPTP/patología , Mesencéfalo/patología , Neuronas/fisiología , Tomografía de Emisión de Positrones , Sustancia Negra/patología , Animales , Isótopos de Carbono , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Intoxicación por MPTP/diagnóstico por imagen , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Sustancia Negra/diagnóstico por imagen , Tetrabenazina/análogos & derivados
14.
Ann Neurol ; 73(3): 390-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23423933

RESUMEN

OBJECTIVE: Molecular imaging and clinical endpoints are frequently discordant in Parkinson disease clinical trials, raising questions about validity of these imaging measures to reflect disease severity. We compared striatal uptake for 3 positron emission tomography (PET) tracers with in vitro measures of nigral cell counts and striatal dopamine in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. METHODS: Sixteen macaques had magnetic resonance imaging and baseline PETs using 6-[18F]fluorodopa (FD), [11C]dihydrotetrabenazine (DTBZ), and 2beta-[11 C]carbomethoxy-3beta-(4-fluorophenyl)tropane (CFT). MPTP (0-0.31 mg/kg) infused unilaterally via the internal carotid artery produced stable hemiparkinsonism by 3 weeks. After 8 weeks, PETs were repeated and animals were euthanized for striatal dopamine measurements and unbiased counts of tyrosine hydroxylase-stained nigral cells. RESULTS: Striatal uptake for each radiotracer (FD, DTBZ, CFT) correlated with stereologic nigral cell counts only for nigral loss<50% (r2=0.84, r2=0.86, r2=0.87, p<0.001 respectively; n=10). In contrast, striatal uptake correlated with striatal dopamine over the full range of dopamine depletion (r2=0.95, r2=0.94, r2=0.94, p<0.001; n=16). Interestingly, indices of striatal uptake of FD, DTBZ, and CFT correlated strongly with each other (r2=0.98, p<0.001). INTERPRETATION: Tracer uptake correlated with nigral neurons only when nigral loss was <50%. This along with previous work demonstrating that nigral cell counts correlate strongly with parkinsonism ratings may explain discordant results between neuroimaging and clinical endpoints. Furthermore, strong correlations among striatal uptake for these tracers support lack of differential regulation of decarboxylase activity (FD), vesicular monoamine transporter type 2 (DTBZ), and dopamine transporter (CFT) within 2 months after nigrostriatal injury.


Asunto(s)
Cuerpo Estriado/patología , Intoxicación por MPTP/patología , Sustancia Negra/patología , Animales , Cocaína/análogos & derivados , Cuerpo Estriado/diagnóstico por imagen , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Intoxicación por MPTP/diagnóstico por imagen , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Unión Proteica/efectos de los fármacos , Radiofármacos , Reproducibilidad de los Resultados , Sustancia Negra/diagnóstico por imagen , Tetrabenazina/análogos & derivados
15.
Exp Neurol ; 237(2): 355-62, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22836146

RESUMEN

OBJECTIVE: Nigrostriatal reserve refers to the threshold of neuronal injury to dopaminergic cell bodies and their terminal fields required to produce parkinsonian motor deficits. Inferential studies have estimated striatal dopamine reserve to be at least 70%. Knowledge of this threshold is critical for planning interventions to prevent symptom onset or reverse nigrostriatal injury sufficient to restore function in people with Parkinson disease. In this study, we determine the nigrostriatal reserve in a non-human primate model that mimics the motor manifestations of Parkinson disease. METHODS: Fifteen macaque monkeys received unilateral randomized doses of the selective dopaminergic neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We compared blinded validated ratings of parkinsonism to in vitro measures of striatal dopamine and unbiased stereologic counts of nigral neurons after tyrosine hydroxylase immunostaining. RESULTS: The percent of residual cell counts in lesioned nigra correlated linearly with the parkinsonism score at 2 months (r=-0.87, p<0.0001). The parkinsonism score at 2 months correlated linearly with the percent residual striatal dopamine (r=-0.77, p=0.016) followed by a flooring effect once nigral cell loss exceeded 50%. A reduction of about 14 to 23% of nigral neuron counts or 14% to 37% of striatal dopamine was sufficient to induce mild parkinsonism. CONCLUSIONS: The nigral cell body and terminal field injury needed to produce parkinsonian motor manifestations may be much less than previously thought.


Asunto(s)
Cuerpo Estriado/química , Dopamina/análisis , Trastornos Parkinsonianos/patología , Sustancia Negra/patología , Animales , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Inmunohistoquímica , Macaca , Masculino , Trastornos Parkinsonianos/metabolismo
16.
Synapse ; 66(9): 770-80, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22535514

RESUMEN

PET imaging studies of the role of the dopamine D2 receptor family in movement and neuropsychiatric disorders are limited by the use of radioligands that have near-equal affinities for D2 and D3 receptor subtypes and are susceptible to competition with endogenous dopamine. By contrast, the radioligand [¹8F]N-methylbenperidol ([¹8F]NMB) has high selectivity and affinity for the D2 receptor subtype (D2R) and is not sensitive to endogenous dopamine. Although [¹8F]NMB has high binding levels in striatum, its utility for measuring D2R in extrastriatal regions is unknown. A composite MR-PET image was constructed across 14 healthy adult participants representing average NMB uptake 60 to 120 min after [¹8F]NMB injection. Regional peak radioactivity was identified using a peak-finding algorithm. FreeSurfer and manual tracing identified a priori regions of interest (ROI) on each individual's MR image and tissue activity curves were extracted from coregistered PET images. [¹8F]NMB binding potentials (BP(ND) s) were calculated using the Logan graphical method with cerebellum as reference region. In eight unique participants, extrastriatal BP(ND) estimates were compared between Logan graphical methods and a three-compartment kinetic tracer model. Radioactivity and BP(ND) levels were highest in striatum, lower in extrastriatal subcortical regions, and lowest in cortical regions relative to cerebellum. Age negatively correlated with striatal BP(ND) s. BP(ND) estimates for extrastriatal ROIs were highly correlated across kinetic and graphical methods. Our findings indicate that PET with [¹8F]NMB measures specific binding in extrastriatal regions, making it a viable radioligand to study extrastriatal D2R levels in healthy and diseased states.


Asunto(s)
Benperidol/análogos & derivados , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Benperidol/análisis , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Femenino , Radioisótopos de Flúor/análisis , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Especificidad de Órganos
17.
J Neuropsychiatry Clin Neurosci ; 24(1): 28-36, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22450611

RESUMEN

Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson's disease (PD) improves motor functioning but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. The authors identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood and decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN.


Asunto(s)
Afecto/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Anciano , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Análisis Multivariante , Dimensión del Dolor , Enfermedad de Parkinson/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
18.
PLoS One ; 7(2): e31439, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359591

RESUMEN

Radioligands for DAT and VMAT2 are widely used presynaptic markers for assessing dopamine (DA) nerve terminals in Parkinson disease (PD). Previous in vivo imaging and postmortem studies suggest that these transporter sites may be regulated as the numbers of nigrostriatal neurons change in pathologic conditions. To investigate this issue, we used in vitro quantitative autoradioradiography to measure striatal DAT and VMAT2 specific binding in postmortem brain from 14 monkeys after unilateral internal carotid artery infusion of 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP) with doses varying from 0 to 0.31 mg/kg. Quantitative estimates of the number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in substantia nigra (SN) were determined with unbiased stereology, and quantitative autoradiography was used to measure DAT and VMAT2 striatal specific binding. Striatal VMAT2 and DAT binding correlated with striatal DA (r(s) = 0.83, r(s) = 0.80, respectively, both with n = 14, p<0.001) but only with nigra TH-ir cells when nigral cell loss was 50% or less (r = 0.93, n = 8, p = 0.001 and r = 0.91, n = 8, p = 0.002 respectively). Reduction of VMAT2 and DAT striatal specific binding sites strongly correlated with each other (r = 0.93, n = 14, p<0.0005). These similar changes in DAT and VMAT2 binding sites in the striatal terminal fields of the surviving nigrostriatal neurons demonstrate that there is no differential regulation of these two sites at 2 months after MPTP infusion.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Autorradiografía , Sitios de Unión , Cuerpo Estriado , Modelos Animales de Enfermedad , Haplorrinos , Neuronas , Sustancia Negra , Tirosina 3-Monooxigenasa
20.
Mov Disord ; 26(3): 549-52, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21370264

RESUMEN

BACKGROUND: Sequence variants in coding and noncoding regions of THAP1 have been associated with primary dystonia. METHODS: In this study, 1,446 Caucasian subjects with mainly adult-onset primary dystonia and 1,520 controls were genotyped for a variant located in the 5'-untranslated region of THAP1 (c.-237_236GA>TT). RESULTS: Minor allele frequencies were 62/2892 (2.14%) and 55/3040 (1.81%) in subjects with dystonia and controls, respectively (P=0.202). Subgroup analyses by gender and anatomical distribution also failed to attain statistical significance. In addition, there was no effect of the TT variant on expression levels of THAP1 transcript or protein. DISCUSSION: Our findings indicate that the c.-237_236GA>TT THAP1 sequence variant does not increase risk for adult-onset primary dystonia in Caucasians.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al ADN/genética , Trastornos Distónicos/genética , Mutación/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Niño , Trastornos Distónicos/etiología , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Regiones no Traducidas/genética , Población Blanca/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...