Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5698, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171214

RESUMEN

Efficient water vapor splitting opens a new strategy to develop scalable and corrosion-free solar-energy-harvesting systems. This study demonstrates highly efficient overall water splitting under vapor feeding using Al-doped SrTiO3 (SrTiO3:Al)-based photocatalyst decorated homogeneously with nano-membrane TiOx or TaOx thin layers (<3 nm). Here, we show the hygroscopic nature of the metal (hydr)oxide layer provides liquid water reaction environment under vapor, thus achieving an AQY of 54 ± 4%, which is comparable to a liquid reaction. TiOx coated, CoOOH/Rh loaded SrTiO3:Al photocatalyst works for over 100 h, under high pressure (0.3 MPa), and with no problems using simulated seawater as the water vapor supply source. This vapor feeding concept is innovative as a high-pressure-tolerant photoreactor and may have value for large-scale applications. It allows uniform distribution of the water reactant into the reactor system without the potential risk of removing photocatalyst powders and eluting some dissolved ions from the reactor.

2.
Nat Commun ; 12(1): 1005, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579929

RESUMEN

Oxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaO2N photocatalyst prepared with the assistance of RbCl flux for H2 evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaO2N photocatalyst evolves H2 over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420 nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion.

3.
Phys Chem Chem Phys ; 8(14): 1724-30, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16633657

RESUMEN

A series of "organic chemical hydrides" such as cyclohexane, methylcyclohexane, cyclohexene, 2-propanol, and cyclohexanol were applied to the direct PEM fuel cell. High performances of the PEM fuel cell were achieved by using cyclohexane (OCV = 920 mV, PD(max) = 15 mW cm(-2)) and 2-propanol (OCV = 790 mV, PD(max) = 78 mW cm(-2)) as fuels without CO(2) emissions. The rates of fuel crossover for cyclohexane, 2-propanol, and methanol were estimated, and the rates of fuel permeation of cyclohexane and 2-propanol were lower than that of methanol. Water electrolysis and electro-reductive hydrogenation of acetone mediated by PEM were carried out and formation of 2-propanol in cathode side was observed. This system is the first example of a "rechargeable" direct fuel cell.


Asunto(s)
Fuentes Generadoras de Energía , Hidrógeno , Compuestos Orgánicos , Oxígeno/análisis , Ciclohexanos , Contaminación Ambiental/prevención & control , Hidrocarburos , Agua
4.
Chem Commun (Camb) ; (6): 690-1, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12703775

RESUMEN

High performance (open circuit voltage = 920 mV, maximum power density = 14-15 mW cm(-2)) of the PEM fuel cell was achieved by using cyclohexane as a fuel with zero-CO2 emission and lower-crossover through PEM than with a methanol-based fuel cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA