Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Neurophysiol ; 156: 166-174, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37952446

RESUMEN

OBJECTIVE: The aim of this study was to develop a feasible method for the detection of negative myoclonus (NM) through long-term home measurements in patients with progressive myoclonus epilepsy type 1. METHODS: The number and duration of silent periods (SP) associated with NM were detected during a 48 h home recording using wearable surface electromyography (EMG) sensors. RESULTS: A newly developed algorithm was able to find short (50-69 ms), intermediate (70-100 ms), and long (101- 500 ms) SPs from EMG data. Negative myoclonus assessed by the algorithm correlated significantly with the video-recorded and physician-evaluated unified myoclonus rating scale (UMRS) scores of NM and action myoclonus. Silent period duration, number, and their combination, correlated strongly and significantly also with the Singer score, which assesses functional status and ambulation. CONCLUSIONS: Negative myoclonus can be determined objectively using long-term EMG measurements in home environment. With long-term measurements, we can acquire more reliable quantified information about NM as a symptom, compared to short evaluation at the clinic. SIGNIFICANCE: As measured using SPs, NM may be a clinically useful measure for monitoring disease progression or assessing antimyoclonic drug effects objectively.


Asunto(s)
Mioclonía , Síndrome de Unverricht-Lundborg , Dispositivos Electrónicos Vestibles , Humanos , Mioclonía/diagnóstico , Electromiografía
2.
Ann Biomed Eng ; 51(11): 2479-2489, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37335376

RESUMEN

Joint loading may affect the development of osteoarthritis, but patient-specific load estimation requires cumbersome motion laboratory equipment. This reliance could be eliminated using artificial neural networks (ANNs) to predict loading from simple input predictors. We used subject-specific musculoskeletal simulations to estimate knee joint contact forces for 290 subjects during over 5000 stance phases of walking and then extracted compartmental and total joint loading maxima from the first and second peaks of the stance phase. We then trained ANN models to predict the loading maxima from predictors that can be measured without motion laboratory equipment (subject mass, height, age, gender, knee abduction-adduction angle, and walking speed). When compared to the target data, our trained models had NRMSEs (RMSEs normalized to the mean of the response variable) between 0.14 and 0.42 and Pearson correlation coefficients between 0.42 and 0.84. The loading maxima were predicted most accurately using the models trained with all predictors. We demonstrated that prediction of knee joint loading maxima may be possible without laboratory-measured motion capture data. This is a promising step in facilitating knee joint loading predictions in simple environments, such as a physician's appointment. In future, the rapid measurement and analysis setup could be utilized to guide patients in rehabilitation to slow development of joint disorders, such as osteoarthritis.


Asunto(s)
Marcha , Osteoartritis de la Rodilla , Humanos , Marcha/fisiología , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Caminata/fisiología , Redes Neurales de la Computación
3.
Sci Rep ; 13(1): 10604, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391521

RESUMEN

To derive the maturation of neurophysiological processes from childhood to adulthood reflected by the change of motor-evoked potential (MEP) features. 38 participants were recruited from four groups (age mean in years [SD in months], number (males)): children (7.3 [4.2], 7(4)), preadolescents (10.3 [6.9], 10(5)), adolescents (15.3 [9.8], 11(5)), and adults (26.9 [46.2], 10(5)). The navigated transcranial magnetic stimulation was performed on both hemispheres at seven stimulation intensity (SI) levels from sub- to supra-threshold and targeted to the representative cortical area of abductor pollicis brevis muscle. MEPs were measured from three hand- and two forearm-muscles. The input-output (I/O) curves of MEP features across age groups were constructed using linear mixed-effect models. Age and SI significantly affected MEP features, whereas the stimulated side had a minor impact. MEP size and duration increased from childhood to adulthood. MEP onset- and peak-latency dropped in adolescence, particularly in hand muscles. Children had the smallest MEPs with the highest polyphasia, whereas I/O curves were similar among preadolescents, adolescents, and adults. This study illustrates some of the changing patterns of MEP features across the ages, suggesting developing patterns of neurophysiological processes activated by TMS, and to motivate studies with larger sample size.


Asunto(s)
Encéfalo , Potenciales Evocados Motores , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Niño , Adolescente , Adulto , Modelos Lineales , Encéfalo/crecimiento & desarrollo
4.
PeerJ ; 11: e15097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038471

RESUMEN

Background: Inertial measurements (IMUs) facilitate the measurement of human motion outside the motion laboratory. A commonly used open-source software for musculoskeletal simulation and analysis of human motion, OpenSim, includes a tool to enable kinematics analysis of IMU data. However, it only enables offline analysis, i.e., analysis after the data has been collected. Extending OpenSim's functionality to allow real-time kinematics analysis would allow real-time feedback for the subject during the measurement session and has uses in e.g., rehabilitation, robotics, and ergonomics. Methods: We developed an open-source software library for real-time inverse kinematics (IK) analysis of IMU data using OpenSim. The software library reads data from IMUs and uses multithreading for concurrent calculation of IK. Its operation delays and throughputs were measured with a varying number of IMUs and parallel computing IK threads using two different musculoskeletal models, one a lower-body and torso model and the other a full-body model. We published the code under an open-source license on GitHub. Results: A standard desktop computer calculated full-body inverse kinematics from treadmill walking at 1.5 m/s with data from 12 IMUs in real-time with a mean delay below 55 ms and reached a throughput of more than 90 samples per second. A laptop computer had similar delays and reached a throughput above 60 samples per second with treadmill walking. Minimal walking kinematics, motion of lower extremities and torso, were calculated from treadmill walking data in real-time with a throughput of 130 samples per second on the laptop and 180 samples per second on the desktop computer, with approximately half the delay of full-body kinematics. Conclusions: The software library enabled real-time inverse kinematical analysis with different numbers of IMUs and customizable musculoskeletal models. The performance results show that subject-specific full-body motion analysis is feasible in real-time, while a laptop computer and IMUs allowed the use of the method outside the motion laboratory.


Asunto(s)
Programas Informáticos , Caminata , Humanos , Fenómenos Biomecánicos , Simulación por Computador , Movimiento (Física)
5.
Epilepsia ; 64(1): 208-217, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398398

RESUMEN

OBJECTIVE: Progressive myoclonic epilepsy type 1 (EPM1) is caused by biallelic alterations in the CSTB gene, most commonly dodecamer repeat expansions. Although transcranial magnetic stimulation (TMS)-induced long-interval intracortical inhibition (LICI) was previously reported to be normal in EPM1, short-interval intracortical inhibition (SICI) was reduced. We explored the association between these measures and the clinical and genetic features in a separate group of patients with EPM1. METHODS: TMS combined with electromyography was performed under neuronavigation. LICI was induced with an inter-stimulus interval (ISI) of 100 ms, and SICI with ISIs of 2 and 3 ms, and their means (mSICIs) were expressed as the ratio of conditioned to unconditioned stimuli. LICI and mSICI were compared between patients and controls. Nonparametric correlation was used to study the association between inhibition and parameters of clinical severity, including the Unified Myoclonus Rating Scale (UMRS); among patients with EPM1 due to biallelic expansion repeats, also the association with the number of repeats was assessed. RESULTS: The study protocol was completed in 19 patients (15 with biallelic expansion repeats and 4 compound heterozygotes), and 7 healthy, age- and sex-matched control participants. Compared to controls, patients demonstrated significantly less SICI (median mSICI ratio 1.18 vs 0.38; p < .001). Neither LICI nor SICI was associated with parameters of clinical severity. In participants with biallelic repeat expansions, the number of repeats in the more affected allele (greater repeat number [GRN]) correlated with LICI (rho = 0.872; p < .001) and SICI (rho = 0.689; p = .006). SIGNIFICANCE: Our results strengthen the finding of deranged γ-aminobutyric acid (GABA)ergic inhibition in EPM1. LICI and SICI may have use as markers of GABAergic impairment in future trials of disease-modifying treatment in this condition. Whether a higher number of expansion repeats leads to greater GABAergic impairment warrants further study.


Asunto(s)
Corteza Motora , Inhibición Neural , Humanos , Inhibición Neural/genética , Electromiografía , Genotipo , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología
6.
Sports Biomech ; 22(7): 874-889, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32546104

RESUMEN

In recent years, a simple method for force-velocity (F-v) profiling, based on split times, has emerged as a potential tool to examine mechanical variables underlying running sprint performance in field conditions. In this study, the reliability and concurrent validity of F-v profiling based on split times were examined when used for ice hockey skating. It was also tested how a modification of the method, in which the start instant of the sprint is estimated based on optimisation (time shift method), affects the reliability and validity of the method. Both intra- and inter-rater reliability were markedly improved when using the time shift method (approximately 50% decrease in the standard error of measurement). Moreover, the results calculated using the time shift method highly correlated (r > 0.83 for all variables) with the results calculated from a continuously tracked movement of the athlete, which was considered here as the reference method. This study shows that a modification to the previously published simple method for F-v profiling improves intra- and inter-rater reliability of the method in ice hockey skating. The time shift method tested here can be used as a reliable tool to test a player's physical performance characteristic underlying sprint performance in ice hockey skating.


Asunto(s)
Hockey , Carrera , Patinación , Humanos , Reproducibilidad de los Resultados , Fenómenos Biomecánicos
7.
PLoS One ; 17(4): e0266936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421176

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for motor symptoms of advanced Parkinson's disease (PD). Currently, DBS programming outcome is based on a clinical assessment. In an optimal situation, an objectively measurable feature would assist the operator to select the appropriate settings for DBS. Surface electromyographic (EMG) measurements have been used to characterise the motor symptoms of PD with good results; with proper methodology, these measurements could be used as an aid to program DBS. METHODS: Muscle activation measurements were performed for 13 patients who had advanced PD and were treated with DBS. The DBS pulse voltage, frequency, and width were changed during the measurements. The measured EMG signals were analysed with parameters that characterise the EMG signal morphology, and the results were compared to the clinical outcome of the adjustment. RESULTS: The EMG signal correlation dimension, recurrence rate, and kurtosis changed significantly when the DBS settings were changed. DBS adjustment affected the signal recurrence rate the most. Relative to the optimal settings, increased recurrence rates (median ± IQR) 1.1 ± 0.5 (-0.3 V), 1.3 ± 1.1 (+0.3 V), 1.7 ± 0.4 (-30 Hz), 1.7 ± 0.8 (+30 Hz), 2.0 ± 1.7 (+30 µs), and 1.5 ± 1.1 (DBS off) were observed. With optimal stimulation settings, the patients' Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) score decreased by 35% on average compared to turning the device off. However, the changes in UPRDS-III arm tremor and rigidity scores did not differ significantly in any settings compared to the optimal stimulation settings. CONCLUSION: Adjustment of DBS treatment alters the muscle activation patterns in PD patients. The changes in the muscle activation patterns can be observed with EMG, and the parameters calculated from the signals differ between optimal and non-optimal settings of DBS. This provides a possibility for using the EMG-based measurement to aid the clinicians to adjust the DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Encéfalo , Estimulación Encefálica Profunda/métodos , Codo , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Resultado del Tratamiento , Temblor/etiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-35286263

RESUMEN

Tissue-level mechanics (e.g., stress and strain) are important factors governing tissue remodeling and development of knee osteoarthritis (KOA), and hence, the success of physical rehabilitation. To date, no clinically feasible analysis toolbox has been introduced and used to inform clinical decision making with subject-specific in-depth joint mechanics of different activities. Herein, we utilized a rapid state-of-the-art electromyography-assisted musculoskeletal finite element analysis toolbox with fibril-reinforced poro(visco)elastic cartilages and menisci to investigate knee mechanics in different activities. Tissue mechanical responses, believed to govern collagen damage, cell death, and fixed charge density loss of proteoglycans, were characterized within 15 patients with KOA while various daily activities and rehabilitation exercises were performed. Results showed more inter-participant variation in joint mechanics during rehabilitation exercises compared to daily activities. Accordingly, the devised workflow may be used for designing subject-specific rehabilitation protocols. Further, results showed the potential to tailor rehabilitation exercises, or assess capacity for daily activity modifications, to optimally load knee tissue, especially when mechanically-induced cartilage degeneration and adaptation are of interest.


Asunto(s)
Cartílago Articular , Fenómenos Biomecánicos , Cartílago Articular/metabolismo , Electromiografía , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/fisiología , Proteoglicanos/metabolismo , Estrés Mecánico
9.
IEEE Trans Biomed Eng ; 69(9): 2860-2871, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35239473

RESUMEN

Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising, MS-FE models to research applications with few participants and makes the models impractical for clinical assessments. Also, these previously developed MS-FE models have not been used to assess activities other than gait. This study introduces and verifies a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography- (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was verified by comparing the estimated muscle activations and joint mechanics to existing experimental data. To determine the importance of the EMG-assisted MS analysis approach, results were compared to those from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments compared to the static-optimization-based MS-FE pipeline. Importantly, the developed pipeline showed great potential as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.


Asunto(s)
Articulación de la Rodilla , Fenómenos Mecánicos , Fenómenos Biomecánicos , Electromiografía , Análisis de Elementos Finitos , Marcha/fisiología , Humanos , Articulación de la Rodilla/fisiología , Modelos Biológicos , Músculos
10.
Acta Odontol Scand ; 80(5): 389-395, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35062852

RESUMEN

OBJECTIVE: The aim was to study the differences in autonomic nervous system activation between maximal tooth clenching task and handgrip test during and after the tasks. Also, the possible activation of trigeminocardiac reflex during the clenching task was explored. MATERIAL AND METHODS: We compared autonomic responses to maximal tooth clenching and handgrip in 28 participants. Responses in heart rate variability, heart rate, and blood pressure were evaluated before, during, and after tests. Although all study participants were considered healthy during recruitment, 14 of them showed painful temporomandibular disorders in the clinical examination, which was taken into account in the analyses. RESULTS: Handgrip and tooth clenching caused similar autonomic responses. However, tooth clenching seemed to activate the trigeminocardiac reflex shown as clenching-related vagal activation. The painful signs of temporomandibular disorders may interfere with the heart rate variability both at the baseline and during both tests causing significant variation in them. CONCLUSIONS: Both handgrip and tooth clenching affect the autonomic nervous system function. Tooth clenching differs from the handgrip due to trigeminocardiac reflex. Painful signs of temporomandibular disorders are interfering with the results of the tests and maybe underestimated in the studies of autonomic responses to both tasks.


Asunto(s)
Bruxismo , Trastornos de la Articulación Temporomandibular , Sistema Nervioso Autónomo , Fuerza de la Mano , Frecuencia Cardíaca/fisiología , Humanos
11.
Front Sports Act Living ; 3: 688993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34514383

RESUMEN

A perturbed postural balance test can be used to investigate balance control under mechanical disturbances. The test is typically performed using purpose-built movable force plates. As instrumented treadmills become increasingly common in biomechanics laboratories and in clinical settings, these devices could be potentially used to assess and train balance control. The purpose of the study was to investigate how an instrumented treadmill applies to perturbed postural balance test. This was investigated by assessing the precision and reliability of the treadmill belt movement and the test-retest reliability of perturbed postural balance test over 5 days. Postural balance variables were calculated from the center of pressure trajectory and included peak displacement, time to peak displacement, and recovery displacement. Additionally, the study investigated short-term learning effects over the 5 days. Eight healthy participants (aged 24-43 years) were assessed for 5 consecutive days with four different perturbation protocols. Center of pressure (COP) data were collected using the force plates of the treadmill while participant and belt movements were measured with an optical motion capture system. The results show that the treadmill can reliably deliver the intended perturbations with <1% deviation in total displacement and with minimal variability between days and participants (typical errors 0.06-2.71%). However, the treadmill was not able to reach the programmed 4 m/s2 acceleration, reaching only about 75% of it. Test-retest reliability of the selected postural balance variables ranged from poor to good (ICC 0.156-0.752) with typical errors between 4.3 and 28.2%. Learning effects were detected based on linear or quadratic trends (p < 0.05) in peak displacement of the slow forward and fast backward protocols and in time to peak displacement in slow and fast backward protocols. The participants altered the initial location of the COP relative to the foot depending on the direction of the perturbation. In conclusion, the precision and accuracy of belt movement were found to be excellent. Test-retest reliability of the balance test utilizing an instrumented treadmill ranged from poor to good which is, in line with previous investigations using purpose-built devices for perturbed postural balance assessment.

12.
Clin Neurophysiol ; 132(10): 2464-2472, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454274

RESUMEN

OBJECTIVE: To develop and test wearable monitoring of surface electromyography and motion for detection and quantification of positive and negative myoclonus in patients with progressive myoclonic epilepsy type 1 (EPM1). METHODS: Surface electromyography and three-dimensional acceleration were measured from 23 EPM1 patients from the biceps brachii (BB) of the dominant and the extensor digitorum communis (EDC) of the non-dominant arm for 48 hours. The patients self-reported the degree of myoclonus in a diary once an hour. Severity of myoclonus with action was evaluated by using video-recorded Unified Myoclonus Rating Scale (UMRS). Correlations of monitored parameters were quantified with the UMRS scores and the self-reported degrees of myoclonus. RESULTS: The monitoring-based myoclonus index correlated significantly (p < 0.001) with the UMRS scores (ρ = 0.883 for BB and ρ = 0.823 for EDC) and with the self-reported myoclonus degrees (ρ = 0.483 for BB and ρ = 0.443 for EDC). Ten patients were assessed as probably having negative myoclonus in UMRS, while our algorithm detected that in twelve patients. CONCLUSIONS: Wearable monitoring was able to detect both positive and negative myoclonus in EPM1 patients. SIGNIFICANCE: Our method is suitable for quantifying objective, real-life treatment effects at home and progression of myoclonus.


Asunto(s)
Acelerometría/métodos , Electromiografía/métodos , Síndrome de Unverricht-Lundborg/diagnóstico , Síndrome de Unverricht-Lundborg/fisiopatología , Dispositivos Electrónicos Vestibles , Acelerometría/instrumentación , Adolescente , Adulto , Electromiografía/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mioclonía/diagnóstico , Mioclonía/fisiopatología , Adulto Joven
14.
Hum Factors ; 61(1): 43-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30526083

RESUMEN

OBJECTIVE: This systematic review synthesizes literature on upper extremity physical exposure associated with floor mopping, in order to (a) assess the impact of changes in mopping systems on physical exposure and (b) propose recommendations for strategies to reduce exposure. BACKGROUND: Floor-cleaning tools and equipment have undergone major improvements. Existing studies have focused on mop design modifications and cleaning efficiency. However, less is known about strain responses caused by modern tools and methods. METHOD: Studies from 1987 to February 2017 were identified by electronic and manual search. All selected studies underwent a quality assessment. The evidence was organized into categories representing different strategies for reducing exposure. The levels of evidence were determined using a best evidence synthesis approach. RESULTS: Eleven studies were included. Based on the review findings, currently there is moderate evidence suggesting that reduced physical exposure has been achieved through development of mopping systems. Levels of evidence for strategies associated with positive effects on physical exposure were: moderate evidence for mop design and handle type, insufficient evidence for mopping technique, and mixed evidence for mopping methods and environment modifications. Therefore, the present study suggests the use of adjustable mop handles as a strategy for reducing physical exposure. CONCLUSION: A more comprehensive approach to reducing physical exposure concerning floor mopping work is necessary. APPLICATION: Knowledge regarding physical exposure reduction can be applied as the basis for decision making in cleaning practice. Information can be incorporated into future research regarding development of floor-cleaning methods.


Asunto(s)
Tareas del Hogar/métodos , Extremidad Superior/fisiología , Accidentes de Trabajo/prevención & control , Planificación Ambiental , Pisos y Cubiertas de Piso , Humanos , Sistemas Hombre-Máquina , Factores de Riesgo , Análisis y Desempeño de Tareas , Extremidad Superior/lesiones
15.
Front Neurosci ; 12: 667, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319343

RESUMEN

Dry immersion (DI) is acknowledged as a reliable space flight analog condition. At DI, subject is immersed in water being wrapped in a waterproof film to imitate microgravity (µG). Microgravity is known to decrease muscle tone due to deprivation of the sensory stimuli that activate the reflexes that keep up the muscle tone. In contrary, parkinsonian patients are characterized by elevated muscle tone, or rigidity, along with rest tremor and akinesia. We hypothesized that DI can diminish the elevated muscle tone and/or the tremor in parkinsonian patients. Fourteen patients with Parkinson's disease (PD, 10 males, 4 females, 47-73 years) and 5 patients with vascular parkinsonism (VP, 1 male, 4 females, 65-72 years) participated in the study. To evaluate the effect of DI on muscles' functioning, we compared parameters of surface electromyogram (sEMG) measured before and after a single 45-min long immersion session. The sEMG recordings were made from the biceps brachii muscle, bilaterally. Each recording was repeated with the following loading conditions: with arms hanging freely down, and with 0, 1, and 2 kg loading on each hand with elbows flexed to 90°. The sEMG parameters comprised of amplitude, median frequency, time of decay of mutual information, sample entropy, correlation dimension, recurrence rate, and determinism of sEMG. These parameters have earlier been proved to be sensitive to PD severity. We used the Wilcoxon test to decide which parameters were statistically significantly different before and after the dry immersion. Accepting the p < 0.05 significance level, amplitude, time of decay of mutual information, recurrence rate, and determinism tended to decrease, while median frequency and sample entropy of sEMG tended to increase after the DI. The most statistically significant change was for the determinism of sEMG from the left biceps with 1 kg loading, which decreased for 84% of the patients. The results suggest that DI can promptly relieve motor symptoms of parkinsonism. We conclude that DI has strong potential as a rehabilitation method for parkinsonian patients.

16.
J Oral Rehabil ; 45(10): 764-769, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30019404

RESUMEN

BACKGROUND: Systemic autonomic changes are well known in migraineurs. Also, masticatory disorders are reported to be associated with migraine. However, if those phenomena are interrelated, and how, is unclear. Moreover, the knowledge on the autonomic responses to masticatory stimuli in migraineurs is limited. OBJECTIVE: To investigate tooth clenching-related cardiac autonomic regulation in migraineurs. METHODS: We compared maximal tooth clenching-induced systemic autonomic responses, indicated by heart rate variability and blood pressure changes, in headache-free migraineurs (n = 17) and control subjects (n = 22). RESULTS: Levels of high-frequency power, reflecting vagal activity, were lower in migraineurs at baseline but increased after tooth clenching whereas in controls they returned to baseline (P < 0.05, mixed model analysis). In multivariate regression model, the presence of migraine predicted the baseline levels of low- and high-frequency power and sympathovagal balance, and the post-test increase in high-frequency power, with the attack frequency and side of headache as the modifiers of the measured changes in migraineurs. The painful signs of temporomandibular disorders, found in clinical oral examination, enhanced both maximal changes in RR intervals and post-test vagal responses to tooth clenching only in migraineurs. CONCLUSION: The enhanced post-clenching vagal activation may represent a marker of the augmented trigeminocardiac reflex to stimulation of trigeminal area, sensitised in migraineurs. Our results support an involvement of autonomic mechanisms in migraine pathophysiology and are interesting in terms of interactions between migraine and masticatory disorders, elucidating one potential way how masticatory disorders may aggravate migraine.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Bruxismo/fisiopatología , Trastornos Migrañosos/fisiopatología , Mialgia/fisiopatología , Reflejo Trigeminocardíaco/fisiología , Adulto , Fuerza de la Mordida , Bruxismo/psicología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Trastornos Migrañosos/psicología , Mialgia/etiología , Dimensión del Dolor
17.
Front Neurol ; 9: 35, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459845

RESUMEN

Levodopa medication is the most efficient treatment for motor symptoms of Parkinson's disease (PD). Levodopa significantly alleviates rigidity, rest tremor, and bradykinesia in PD. The severity of motor symptoms can be graded with UPDRS-III scale. Levodopa challenge test is routinely used to assess patients' eligibility to deep-brain stimulation (DBS) in PD. Feasible and objective measurements to assess motor symptoms of PD during levodopa challenge test would be helpful in unifying the treatment. Twelve patients with advanced PD who were candidates for DBS treatment were recruited to the study. Measurements were done in four phases before and after levodopa challenge test. Rest tremor and rigidity were evaluated using UPDRS-III score. Electromyographic (EMG) signals from biceps brachii and kinematic signals from forearm were recorded with wireless measurement setup. The patients performed two different tasks: arm isometric tension and arm passive flexion-extension. The electromyographic and the kinematic signals were analyzed with parametric, principal component, and spectrum-based approaches. The principal component approach for isometric tension EMG signals showed significant decline in characteristics related to PD during levodopa challenge test. The spectral approach on passive flexion-extension EMG signals showed a significant decrease on involuntary muscle activity during the levodopa challenge test. Both effects were stronger during the levodopa challenge test compared to that of patients' personal medication. There were no significant changes in the parametric approach for EMG and kinematic signals during the measurement. The results show that a wireless and wearable measurement and analysis can be used to study the effect of levodopa medication in advanced Parkinson's disease.

18.
Front Neurol ; 9: 1112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622506

RESUMEN

Prevalence of masticatory parafunctions, such as tooth clenching and grinding, is higher among migraineurs than non-migraineurs, and masticatory dysfunctions may aggravate migraine. Migraine predisposes to cerebrovascular disturbances, possibly due to impaired autonomic vasoregulation, and sensitization of the trigeminovascular system. The relationships between clenching, migraine, and cerebral circulation are poorly understood. We used Near-Infrared Spectroscopy to investigate bilateral relative oxy- (%Δ[O2Hb]), deoxy- (%Δ[HHb]), and total (%Δ[tHb]) hemoglobin concentration changes in prefrontal cortex induced by maximal tooth clenching in twelve headache-free migraineurs and fourteen control subjects. From the start of the test, migraineurs showed a greater relative increase in right-side %Δ[HHb] than controls, who showed varying reactions, and right-side increase in %Δ[tHb] was also greater in migraineurs (p < 0.001 and p < 0.05, respectively, time-group interactions, Linear mixed models). With multivariate regression model, migraine predicted the magnitude of maximal blood pressure increases, associated in migraineurs with mood scores and an intensity of both headache and painful signs of temporomandibular disorders (pTMD). Although changes in circulatory parameters predicted maximal NIRS responses, the between-group differences in the right-side NIRS findings remained significant after adjusting them for systolic blood pressure and heart rate. A family history of migraine, reported by all migraineurs and four controls, also predicted maximal increases in both %Δ[HHb] and %Δ[tHb]. Presence of pTMD, revealed in clinical oral examination in eight migraineurs and eight controls, was related to maximal %Δ[HHb] increase only in controls. To conclude, the greater prefrontal right-side increases in cerebral %Δ[HHb] and %Δ[tHb] may reflect disturbance of the tooth clenching-related cerebral (de)oxygenation based on impaired reactivity and abnormal microcirculation processes in migraineurs. This finding may have an impact in migraine pathophysiology and help to explain the deleterious effect of masticatory dysfunctions in migraine patients. However, the role of tooth clenching as a migraine trigger calls for further studies.

19.
J Biomech Eng ; 140(4)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101403

RESUMEN

The objective of the study was to investigate the effects of bariatric surgery-induced weight loss on knee gait and cartilage degeneration in osteoarthritis (OA) by combining magnetic resonance imaging (MRI), gait analysis, finite element (FE) modeling, and cartilage degeneration algorithm. Gait analyses were performed for obese subjects before and one-year after the bariatric surgery. FE models were created before and after weight loss for those subjects who did not have severe tibio-femoral knee cartilage loss. Knee cartilage degenerations were predicted using an adaptive cartilage degeneration algorithm which is based on cumulative overloading of cartilage, leading to iteratively altered cartilage properties during OA. The average weight loss was 25.7±11.0 kg corresponding to a 9.2±3.9 kg/m2 decrease in body mass index (BMI). External knee rotation moment increased, and minimum knee flexion angle decreased significantly (p < 0.05) after weight loss. Moreover, weight loss decreased maximum cartilage degeneration by 5±23% and 13±11% on the medial and lateral tibial cartilage surfaces, respectively. Average degenerated volumes in the medial and lateral tibial cartilage decreased by 3±31% and 7±32%, respectively, after weight loss. However, increased degeneration levels could also be observed due to altered knee kinetics. The present results suggest that moderate weight loss changes knee kinetics and kinematics and can slow-down cartilage degeneration for certain patients. Simulation results also suggest that prediction of cartilage degeneration is subject-specific and highly depend on the altered gait loading, not just the patient's weight.


Asunto(s)
Cirugía Bariátrica , Cartílago Articular/patología , Marcha , Rodilla/fisiopatología , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Pérdida de Peso/fisiología , Fenómenos Biomecánicos , Femenino , Análisis de Elementos Finitos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/cirugía
20.
Infant Behav Dev ; 45(Pt A): 98-108, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27792918

RESUMEN

Little is known how the brain of the newborn infant responds to the postnatal nutrition and care. No systematic studies exist in which the effects of nutritional and non-nutritional sucking on the brain activity of the infant were compared. We recorded the EEG activity of 40 infants at the ages of 0,6,12 and 24 weeks in four successive behavioral stages: while the infants were hungry and waiting for sucking, during non-nutritional and nutritional sucking, and during satiation after completed feeding. Quantitative EEG analysis was performed using occipital, parietal and central EEG channels. In the newborn infants, a significant reduction in the EEG power was found after nutritional sucking in the all EEG frequency bands studied (1-10Hz), which was paralleled by a significant behavioral alertness decline. This response decayed during the subsequent neonatal period and was completely absent at the age of 12 weeks. In 24-week-old infants, nutritional sucking was accompanied with an increase in rhythmic theta activity during which no significant alertness change took place. Non-nutritional sucking was connected with minor and non-significant effects on the EEG. We conclude that in newborn infants nutritional sucking has a direct effect on the EEG, which has a soothing character and is connected with an alertness decline. In 24-week-old infants the response to nutritional sucking is of a different type and consists of an organized, rhythmical theta activity in the EEG not directly linked with alertness change. Our findings suggest a developmental relationship between nursing and infant brain function with plausible affective and cognitive implications.


Asunto(s)
Ondas Encefálicas/fisiología , Desarrollo Infantil/fisiología , Conducta Alimentaria/fisiología , Conducta del Lactante/fisiología , Conducta en la Lactancia/fisiología , Factores de Edad , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...