Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252433

RESUMEN

ObjectivesTo compare approaches for obtaining relative and absolute estimates of risk of 28-day COVID-19 mortality for adults in the general population of England in the context of changing levels of circulating infection. DesignThree designs were compared. (A) case-cohort which does not explicitly account for the time-changing prevalence of COVID-19 infection, (B) 28-day landmarking, a series of sequential overlapping sub-studies incorporating time-updating proxy measures of the prevalence of infection, and (C) daily landmarking. Regression models were fitted to predict 28-day COVID-19 mortality. SettingWorking on behalf of NHS England, we used clinical data from adult patients from all regions of England held in the TPP SystmOne electronic health record system, linked to Office for National Statistics (ONS) mortality data, using the OpenSAFELY platform. ParticipantsEligible participants were adults aged 18 or over, registered at a general practice using TPP software on 1st March 2020 with recorded sex, postcode and ethnicity. 11,972,947 individuals were included, and 7,999 participants experienced a COVID-19 related death. The study period lasted 100 days, ending 8th June 2020. PredictorsA range of demographic characteristics and comorbidities were used as potential predictors. Local infection prevalence was estimated with three proxies: modelled based on local prevalence and other key factors; rate of A&E COVID-19 related attendances; and rate of suspected COVID-19 cases in primary care. Main outcome measuresCOVID-19 related death. ResultsAll models discriminated well between patients who did and did not experience COVID-19 related death, with C-statistics ranging from 0.92-0.94. Accurate estimates of absolute risk required data on local infection prevalence, with modelled estimates providing the best performance. ConclusionsReliable estimates of absolute risk need to incorporate changing local prevalence of infection. Simple models can provide very good discrimination and may simplify implementation of risk prediction tools in practice.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21250959

RESUMEN

SARS-CoV-2 lineage B.1.1.7, a variant first detected in the United Kingdom in September 20201, has spread to multiple countries worldwide. Several studies have established that B.1.1.7 is more transmissible than preexisting variants, but have not identified whether it leads to any change in disease severity2. We analyse a dataset linking 2,245,263 positive SARS-CoV-2 community tests and 17,452 COVID-19 deaths in England from 1 September 2020 to 14 February 2021. For 1,146,534 (51%) of these tests, the presence or absence of B.1.1.7 can be identified because of mutations in this lineage preventing PCR amplification of the spike gene target (S gene target failure, SGTF1). Based on 4,945 deaths with known SGTF status, we estimate that the hazard of death associated with SGTF is 55% (95% CI 39-72%) higher after adjustment for age, sex, ethnicity, deprivation, care home residence, local authority of residence and test date. This corresponds to the absolute risk of death for a 55-69-year-old male increasing from 0.6% to 0.9% (95% CI 0.8-1.0%) within 28 days after a positive test in the community. Correcting for misclassification of SGTF and missingness in SGTF status, we estimate a 61% (42-82%) higher hazard of death associated with B.1.1.7. Our analysis suggests that B.1.1.7 is not only more transmissible than preexisting SARS-CoV-2 variants, but may also cause more severe illness.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249791

RESUMEN

ObjectivesPredicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patients "bed pathway" - the sequence of transfers between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. DesignWe obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. ResultsIn both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. ConclusionsWe identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248822

RESUMEN

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248559

RESUMEN

BackgroundMortality rates of UK patients hospitalised with COVID-19 appeared to fall during the first wave. We quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. MethodsThe International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK recruited a prospective cohort admitted to 247 acute UK hospitals with COVID-19 in the first wave (March to August 2020). Outcome was hospital mortality within 28 days of admission. We performed a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and hospital mortality adjusting for confounders (demographics, comorbidity, illness severity) and quantifying potential mediators (respiratory support and steroids). FindingsUnadjusted hospital mortality fell from 32.3% (95%CI 31.8, 32.7) in March/April to 16.4% (95%CI 15.0, 17.8) in June/July 2020. Reductions were seen in all ages, ethnicities, both sexes, and in comorbid and non-comorbid patients. After adjustment, there was a 19% reduction in the odds of mortality per 4 week period (OR 0.81, 95%CI 0.79, 0.83). 15.2% of this reduction was explained by greater disease severity and comorbidity earlier in the epidemic. The use of respiratory support changed with greater use of non-invasive ventilation (NIV). 22.2% (OR 0.94, 95%CI 0.94, 0.96) of the reduction in mortality was mediated by changes in respiratory support. InterpretationThe fall in hospital mortality in COVID-19 patients during the first wave in the UK was partly accounted for by changes in case mix and illness severity. A significant reduction was associated with differences in respiratory support and critical care use, which may partly reflect improved clinical decision making. The remaining improvement in mortality is not explained by these factors, and may relate to community behaviour on inoculum dose and hospital capacity strain. FundingNIHR & MRC Key points / Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSRisk factors for mortality in patients hospitalised with COVID-19 have been established. However there is little literature regarding how mortality is changing over time, and potential explanations for why this might be. Understanding changes in mortality rates over time will help policy makers identify evolving risk, strategies to manage this and broader decisions about public health interventions. Added value of this studyMortality in hospitalised patients at the beginning of the first wave was extremely high. Patients who were admitted to hospital in March and early April were significantly more unwell at presentation than patients who were admitted in later months. Mortality fell in all ages, ethnic groups, both sexes and in patients with and without comorbidity, over and above contributions from falling illness severity. After adjustment for these variables, a fifth of the fall in mortality was explained by changes in the use of respiratory support and steroid treatment, along with associated changes in clinical decision-making relating to supportive interventions. However, mortality was persistently high in patients who required invasive mechanical ventilation, and in those patients who received non-invasive ventilation outside of critical care. Implications of all the available evidenceThe observed reduction in hospital mortality was greater than expected based on the changes seen in both case mix and illness severity. Some of this fall can be explained by changes in respiratory care, including clinical learning. In addition, introduction of community policies including wearing of masks, social distancing, shielding of vulnerable patients and the UK lockdown potentially resulted in people being exposed to less virus. The decrease in mortality varied depending on the level of respiratory support received. Patients receiving invasive mechanical ventilation have persistently high mortality rates, albeit with a changing case-mix, and further research should target this group. Severe COVID-19 disease has primarily affected older people in the UK. Many of these people, but not all have significant frailty. It is essential to ensure that patients and their families remain at the centre of decision-making, and we continue with an individualised approach to their treatment and care.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20141986

RESUMEN

IntroductionNovel coronavirus 2019 (COVID-19) has propagated a global pandemic with significant health, economic and social costs. Emerging emergence has suggested that several factors may be associated with increased risk from severe outcomes or death from COVID-19. Clinical risk prediction tools have significant potential to generate individualised assessment of risk and may be useful for population stratification and other use cases. Methods and analysisWe will use a prospective open cohort study of routinely collected data from 1205 general practices in England in the QResearch database. The primary outcome is COVID-19 mortality (in or out-of-hospital) defined as confirmed or suspected COVID-19 mentioned on the death certificate, or death occurring in a person with SARS-CoV-2 infection between 24th January and 30th April 2020. Our primary outcome in adults is COVID-19 mortality (including out of hospital and in hospital deaths). We will also examine COVID-19 hospitalisation in children. Time-to-event models will be developed in the training data to derive separate risk equations in adults (19-100 years) for males and females for evaluation of risk of each outcome within the 3-month follow-up period (24th January to 30th April 2020), accounting for competing risks. Predictors considered will include age, sex, ethnicity, deprivation, smoking status, alcohol intake, body mass index, pre-existing medical co-morbidities, and concurrent medication. Measures of performance (prediction errors, calibration and discrimination) will be determined in the test data for men and women separately and by ten-year age group. For children, descriptive statistics will be undertaken if there are currently too few serious events to allow development of a risk model. The final model will be externally evaluated in (a) geographically separate practices and (b) other relevant datasets as they become available. Ethics and disseminationThe project has ethical approval and the results will be submitted for publication in a peer-reviewed journal. Strengths and limitations of the studyO_LIThe individual-level linkage of general practice, Public Health England testing, Hospital Episode Statistics and Office of National Statistics death register datasets enable a robust and accurate ascertainment of outcomes C_LIO_LIThe models will be trained and evaluated in population-representative datasets of millions of individuals C_LIO_LIShielding for clinically extremely vulnerable was advised and in place during the study period, therefore risk predictions influenced by the presence of some shielding conditions may require careful consideration C_LI

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...