Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1840(1): 303-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24041992

RESUMEN

BACKGROUND: The thioredoxin system maintains redox balance through the action of thioredoxin and thioredoxin reductase. Thioredoxin regulates the activity of various substrates, including those that function to counteract cellular oxidative stress. These include the peroxiredoxins, methionine sulfoxide reductase A and specific transcription factors. Of particular relevance is Redox Factor-1, which in turn activates other redox-regulated transcription factors. SCOPE OF REVIEW: Experimentally defined transcription factor binding sites in the human thioredoxin and thioredoxin reductase gene promoters together with promoters of the major thioredoxin system substrates involved in regulating cellular redox status are discussed. An in silico approach was used to identify potential putative binding sites for these transcription factors in all of these promoters. MAJOR CONCLUSIONS: Our analysis reveals that many redox gene promoters contain the same transcription factor binding sites. Several of these transcription factors are in turn redox regulated. The ARE is present in several of these promoters and is bound by Nrf2 during various oxidative stress stimuli to upregulate gene expression. Other transcription factors also bind to these promoters during the same oxidative stress stimuli, with this redundancy supporting the importance of the antioxidant response. Putative transcription factor sites were identified in silico, which in combination with specific regulatory knowledge for that gene promoter may inform future experiments. GENERAL SIGNIFICANCE: Redox proteins are involved in many cellular signalling pathways and aberrant expression can lead to disease or other pathological conditions. Therefore understanding how their expression is regulated is relevant for developing therapeutic agents that target these pathways.


Asunto(s)
Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción , Tiorredoxinas/genética , Transcripción Genética/genética , Humanos
2.
Biochem Biophys Res Commun ; 419(2): 350-5, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22342720

RESUMEN

The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Neoplasias de la Mama/genética , Hipoxia de la Célula , Línea Celular Tumoral , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/análisis , Tiorredoxinas/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...