Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38407280

RESUMEN

SUMMARY: Nanometa Live presents a user-friendly interface designed for real-time metagenomic data analysis and pathogen identification utilizing Oxford Nanopore Technologies' MinION and Flongle flow cells. It offers an efficient workflow and graphical interface for the visualization and interpretation of metagenomic data as it is being generated. Key features include automated BLAST validation, streamlined handling of custom Kraken2 databases, and a simplified graphical user interface for enhanced user experience. Nanometa Live is particularly notable for its capability to run without constant internet or server access once installed, setting it apart from similar tools. It provides a comprehensive view of taxonomic composition and facilitates the detection of user-defined pathogens or other species of interest, catering to both researchers and clinicians. AVAILABILITY AND IMPLEMENTATION: Nanometa Live has been implemented as a local web application using the Dash framework with Snakemake handling the data processing. The source code is freely accessible on the GitHub repository at https://github.com/FOI-Bioinformatics/nanometa_live and it is easily installable using Bioconda. It includes containerization support via Docker and Singularity, ensuring ease of use, reproducibility, and portability.


Asunto(s)
Metagenoma , Programas Informáticos , Reproducibilidad de los Resultados , Metagenómica , Análisis de Datos
2.
Microbiologyopen ; 11(5): e1320, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36314747

RESUMEN

BACKGROUND: Surface raw water used as a source for drinking water production is a critical resource, sensitive to contamination. We conducted a study on Swedish raw water sources, aiming to identify mutually co-occurring metacommunities of bacteria, and environmental factors driving such patterns. METHODS: The water sources were different regarding nutrient composition, water quality, and climate characteristics, and displayed various degrees of anthropogenic impact. Water inlet samples were collected at six drinking water treatment plants over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint model for taxa abundance. RESULTS: Two major groups of well-defined metacommunities of microorganisms were identified, in addition to a third, less distinct, and taxonomically more diverse group. These three metacommunities showed various associations to the measured environmental data. Predictions for the well-defined metacommunities revealed differing sets of favored metabolic pathways and life strategies. In one community, taxa with methanogenic metabolism were common, while a second community was dominated by taxa with carbohydrate and lipid-focused metabolism. CONCLUSION: The identification of ubiquitous persistent co-occurring bacterial metacommunities in freshwater habitats could potentially facilitate microbial source tracking analysis of contamination issues in freshwater sources.


Asunto(s)
Agua Potable , Suecia , Bacterias/genética , Agua Dulce/microbiología , Ecosistema , ARN Ribosómico 16S/genética
3.
Bioinformatics ; 37(21): 3932-3933, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34469515

RESUMEN

SUMMARY: The Flexible Taxonomy Database framework provides a method for modification and merging official and custom taxonomic databases to create improved databases. Using such databases will increase accuracy and precision of existing methods to classify sequence reads. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/FOI-Bioinformatics/flextaxd and installable through Bioconda.


Asunto(s)
Programas Informáticos , Bases de Datos Factuales
4.
PeerJ ; 8: e8424, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025374

RESUMEN

Microorganisms are essential constituents of ecosystems. To improve our understanding of how various factors shape microbial diversity and composition in nature it is important to study how microorganisms vary in space and time. Factors shaping microbial communities in ground level air have been surveyed in a limited number of studies, indicating that geographic location, season and local climate influence the microbial communities. However, few have surveyed more than one location, at high latitude or continuously over more than a year. We surveyed the airborne microbial communities over two full consecutive years in Kiruna, in the Arctic boreal zone, and Ljungbyhed, in the Southern nemoral zone of Sweden, by using a unique collection of archived air filters. We mapped both geographic and seasonal differences in bacterial and fungal communities and evaluated environmental factors that may contribute to these differences and found that location, season and weather influence the airborne communities. Location had stronger influence on the bacterial community composition compared to season, while location and season had equal influence on the fungal community composition. However, the airborne bacterial and fungal diversity showed overall the same trend over the seasons, regardless of location, with a peak during the warmer parts of the year, except for the fungal seasonal trend in Ljungbyhed, which fluctuated more within season. Interestingly, the diversity and evenness of the airborne communities were generally lower in Ljungbyhed. In addition, both bacterial and fungal communities varied significantly within and between locations, where orders like Rhizobiales, Rhodospirillales and Agaricales dominated in Kiruna, whereas Bacillales, Clostridiales and Sordariales dominated in Ljungbyhed. These differences are a likely reflection of the landscape surrounding the sampling sites where the landscape in Ljungbyhed is more homogenous and predominantly characterized by artificial and agricultural surroundings. Our results further indicate that local landscape, as well as seasonal variation, shapes microbial communities in air.

5.
FEBS Lett ; 592(24): 4078-4086, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30372516

RESUMEN

Environmental perturbations induce transcriptional changes, some of which may be inherited even in the absence of the initial stimulus. Previous studies have focused on transfers through the germline although microbiota is also passed on to the offspring. Thus, we inspected the involvement of the gut microbiome in transgenerational inheritance of environmental exposures in Drosophila melanogaster. We grew flies in the cold versus control temperatures and compared their transcriptional patterns in both conditions as well as in their offspring. F2 flies grew in control temperature, while we controlled their microbiota acquisition from either F1 sets. Transcriptional status of some genes was conserved transgenerationally, and a subset of these genes, mainly expressed in the gut, was transcriptionally dependent on the acquired microbiome.


Asunto(s)
Adaptación Fisiológica/genética , Frío , Drosophila melanogaster/genética , Microbioma Gastrointestinal/genética , Patrón de Herencia/genética , Animales , Drosophila melanogaster/microbiología , Trasplante de Microbiota Fecal , Heces/microbiología , Perfilación de la Expresión Génica , Masculino
7.
Elife ; 62017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327288

RESUMEN

Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN
8.
Infect Ecol Epidemiol ; 6: 32838, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790972

RESUMEN

INTRODUCTION: Outbreaks of the zoonotic disease tularemia occurred in north-east Bulgaria in the 1960s. Then came 30 years of epidemiological silence until new outbreaks occurred in west Bulgaria in the 1990s. To investigate how bacterial strains of Francisella tularensis causing tularemia in wildlife and humans in the 1960s and the 1990s were related, we explored their genetic diversity. MATERIAL AND METHODS: Ten F. tularensis genomes from the 1960s (n=3) and the 1990s (n=7) were sequenced, assigned to canonical single-nucleotide polymorphism (canSNP) clades, and compared to reference genomes. We developed four new canSNP polymerase chain reaction (PCR) assays based on the genome sequence information. RESULTS AND DISCUSSION: The genetic analysis showed that the outbreaks in the 1960s as well as in the 1990s involved multiple clones and new genetic diversity. The smallest genetic difference found between any of the Bulgarian strains was five SNPs between the strains L2 and 81 isolated 43 years apart, indicating that F. tularensis may persist locally over long time periods without causing outbreaks. The existence of genetically highly similar strain-pairs isolated the same year in the same area from different hosts supports a hypothesis of local expansion of clones during outbreaks. Close relationship (two SNPs) was found between one strain isolated 1961 in northeast Bulgaria and one strain isolated 5 years before in USSR. Historical data coinciding with the actual time point describe the introduction of water rats from USSR into the Bulgarian outbreak area, which may explain the close genetic relationship and the origin of the outbreak. CONCLUSION: Genome analysis of strains from two outbreaks in the 1960s and the 1990s provided valuable information on the genetic diversity and persistence of F. tularensis in Bulgaria.

9.
J Antimicrob Chemother ; 71(10): 2815-23, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27334667

RESUMEN

OBJECTIVES: We analysed diverse strains of Francisella tularensis subsp. holarctica to assess if its division into biovars I and II is associated with specific mutations previously linked to erythromycin resistance and to determine the distribution of this resistance trait across this subspecies. METHODS: Three-hundred and fourteen F. tularensis subsp. holarctica strains were tested for erythromycin susceptibility and whole-genome sequences for these strains were examined for SNPs in genes previously associated with erythromycin resistance. Each strain was assigned to a global phylogenetic framework using genome-wide canonical SNPs. The contribution of a specific SNP to erythromycin resistance was examined using allelic exchange. The geographical distribution of erythromycin-resistant F. tularensis strains was further investigated by literature search. RESULTS: There was a perfect correlation between biovar II strains (erythromycin resistance) and the phylogenetic group B.12. Only B.12 strains had an A → C SNP at position 2059 in the three copies of the rrl gene. Introducing 2059C into an rrl gene of an erythromycin-susceptible F. tularensis strain resulted in resistance. An additional 1144 erythromycin-resistant strains were identified from the scientific literature, all of them from Eurasia. CONCLUSIONS: Erythromycin resistance in F. tularensis is caused by an A2059C rrl gene mutation, which exhibits a strictly clonal inheritance pattern found only in phylogenetic group B.12. This group is an extremely successful clone, representing the most common type of F. tularensis throughout Eurasia.


Asunto(s)
Antibacterianos/farmacología , Eritromicina/farmacología , Francisella tularensis/efectos de los fármacos , Francisella tularensis/genética , Polimorfismo de Nucleótido Simple , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Genoma Bacteriano , Mutación , Fenotipo , Filogenia , ARN Ribosómico 23S/genética
10.
Microb Genom ; 2(12): e000100, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28348839

RESUMEN

For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.


Asunto(s)
Francisella tularensis/clasificación , Francisella tularensis/fisiología , Filogenia , ADN Bacteriano/genética , Europa (Continente) , Evolución Molecular , Genética de Población , Humanos , Mutación , Tularemia/microbiología
11.
Infect Dis (Lond) ; 47(10): 701-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26004621

RESUMEN

BACKGROUND: Finland repeatedly reports some of the highest incidences of tularaemia worldwide. To determine genetic diversity of the aetiologic agent of tularaemia, Francisella tularensis, a total of 76 samples from humans (n = 15) and animals (n = 61) were analysed. METHODS: We used CanSNPs and canINDEL hydrolysis or TaqMan MGB probes for the analyses, either directly from the clinical tissue samples (n = 21) or from bacterial isolates (n = 55). RESULTS: The genotypes of the strains were assigned to three previously described basal subspecies holarctica clades. The majority of strains (n = 67) were assigned to B.12, a clade reported to dominate in Scandinavia and Eastern Europe. A single strain was assigned to clade B.4, previously reported from North America, Europe and China. The remaining strains (n = 8) were members of clade B.6. Importantly, new diversity was discovered in clade B.6. We describe two newly designed TaqMan MGB probe assays for this new B.6 subclade B.70, and its previously identified sister clade B.11, a clade dominantly found in Western Europe. CONCLUSIONS: The high genetic diversity of F. tularensis subspecies holarctica present in Finland is consistent with previous findings in Sweden. The results suggest a northern and southern division of the B.6 subclade B.10, where B.11 predominates in Western and Central Europe and B.70 is found in Fennoscandia. Further research is required to define whether the vast diversity of genotypes found is related to different habitats or reservoir species, their different postglacial immigration routes to Fennoscandia, or dynamics of the reservoir species.


Asunto(s)
Francisella tularensis/genética , Francisella tularensis/aislamiento & purificación , Variación Genética , Tularemia/microbiología , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Europa (Continente) , Finlandia/epidemiología , Francisella tularensis/clasificación , Genoma Bacteriano , Genotipo , Humanos , Filogenia , Filogeografía , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Tularemia/epidemiología
12.
Genome Announc ; 3(2)2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25792039

RESUMEN

We present the complete genome sequence of Francisella guangzhouensis strain 08HL01032(T), which consists of one chromosome (1,658,482 bp) and one plasmid (3,045 bp) with G+C contents of 32.0% and 28.7%, respectively.

13.
J Mol Biol ; 427(6 Pt B): 1495-1512, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25451601

RESUMEN

Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.


Asunto(s)
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Arginina/metabolismo , Encéfalo/metabolismo , Glutamina/metabolismo , Histidina/metabolismo , Neuronas/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Western Blotting , Encéfalo/citología , Células Cultivadas , Electrofisiología , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Hibridación in Situ , Transporte Iónico , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Oocitos/citología , Oocitos/metabolismo , Filogenia , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sodio/metabolismo , Xenopus laevis
14.
Emerg Infect Dis ; 21(1): 153-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25531286

RESUMEN

In November 2012, a group of 7 persons who participated in a hare hunt in North Rhine-Westphalia, Germany, acquired tularemia. Two F. tularensis subsp. holarctica isolates were cultivated from human and hare biopsy material. Both isolates belonged to the FTN002-00 genetic subclade (derived for single nucleotide polymorphisms B.10 and B.18), thus indicating likely hare-to-human transmission.


Asunto(s)
Francisella tularensis/genética , Liebres/microbiología , Tularemia/transmisión , Animales , Genes Bacterianos , Alemania , Humanos , Polimorfismo de Nucleótido Simple , Tularemia/microbiología , Zoonosis
15.
Genome Announc ; 2(6)2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25428973

RESUMEN

A strain of Francisella endociliophora was isolated from a laboratory culture of the marine ciliate Euplotes raikovi. Here, we report the complete genome sequence of the bacterial strain FSC1006 (Francisella Strain Collection, Swedish Defence Research Agency, Umeå, Sweden).

16.
Bioinformatics ; 30(12): 1762-4, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24574113

RESUMEN

SUMMARY: Advances in typing methodologies have recently reformed the field of molecular epidemiology of pathogens. The falling cost of sequencing technologies is creating a deluge of whole genome sequencing data that burdens bioinformatics resources and tool development. In particular, single nucleotide polymorphisms in core genomes of pathogens are recognized as the most important markers for inferring genetic relationships because they are evolutionarily stable and amenable to high-throughput detection methods. Sequence data will provide an excellent opportunity to extend our understanding of infectious disease when the challenge of extracting knowledge from available sequence resources is met. Here, we present an efficient and user-friendly genotype classification pipeline, CanSNPer, based on an easily expandable database of predefined canonical single nucleotide polymorphisms. AVAILABILITY AND IMPLEMENTATION: All documentation and Python-based source code for the CanSNPer are freely available at http://github.com/adrlar/CanSNPer.


Asunto(s)
Técnicas de Genotipaje/métodos , Tipificación Molecular/métodos , Programas Informáticos , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple
17.
PLoS One ; 9(1): e85417, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465554

RESUMEN

The case rate of Q fever in Europe has increased dramatically in recent years, mainly because of an epidemic in the Netherlands in 2009. Consequently, there is a need for more extensive genetic characterization of the disease agent Coxiella burnetii in order to better understand the epidemiology and spread of this disease. Genome reference data are essential for this purpose, but only thirteen genome sequences are currently available. Current methods for typing C. burnetii are criticized for having problems in comparing results across laboratories, require the use of genomic control DNA, and/or rely on markers in highly variable regions. We developed in this work a method for single nucleotide polymorphism (SNP) typing of C. burnetii isolates and tissue samples based on new assays targeting ten phylogenetically stable synonymous canonical SNPs (canSNPs). These canSNPs represent previously known phylogenetic branches and were here identified from sequence comparisons of twenty-one C. burnetii genomes, eight of which were sequenced in this work. Importantly, synthetic control templates were developed, to make the method useful to laboratories lacking genomic control DNA. An analysis of twenty-one C. burnetii genomes confirmed that the species exhibits high sequence identity. Most of its SNPs (7,493/7,559 shared by >1 genome) follow a clonal inheritance pattern and are therefore stable phylogenetic typing markers. The assays were validated using twenty-six genetically diverse C. burnetii isolates and three tissue samples from small ruminants infected during the epidemic in the Netherlands. Each sample was assigned to a clade. Synthetic controls (vector and PCR amplified) gave identical results compared to the corresponding genomic controls and are viable alternatives to genomic DNA. The results from the described method indicate that it could be useful for cheap and rapid disease source tracking at non-specialized laboratories, which requires accurate genotyping, assay accessibility and inter-laboratory comparisons.


Asunto(s)
Técnicas de Tipificación Bacteriana/normas , Coxiella burnetii/genética , ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleótido Simple , Animales , Secuencia de Bases , Coxiella burnetii/clasificación , Coxiella burnetii/aislamiento & purificación , Genotipo , Humanos , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Fiebre Q/diagnóstico , Fiebre Q/microbiología , Estándares de Referencia
18.
BMC Microbiol ; 13: 61, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23517149

RESUMEN

BACKGROUND: Tularemia is a zoonotic disease caused by Francisella tularensis that has been found in many different vertebrates. In Germany most human infections are caused by contact with infected European brown hares (Lepus europaeus). The aim of this study was to elucidate the epidemiology of tularemia in hares using phenotypic and genotypic characteristics of F. tularensis. RESULTS: Cultivation of F. tularensis subsp. holarctica bacteria from organ material was successful in 31 of 52 hares that had a positive PCR result targeting the Ft-M19 locus. 17 isolates were sensitive to erythromycin and 14 were resistant. Analysis of VNTR loci (Ft-M3, Ft-M6 and Ft-M24), INDELs (Ftind33, Ftind38, Ftind49, RD23) and SNPs (B.17, B.18, B.19, and B.20) was shown to be useful to investigate the genetic relatedness of Francisella strains in this set of strains. The 14 erythromycin resistant isolates were assigned to clade B.I, and 16 erythromycin sensitive isolates to clade B.IV and one isolate was found to belong to clade B.II. MALDI-TOF mass spectrometry (MS) was useful to discriminate strains to the subspecies level. CONCLUSIONS: F. tularensis seems to be a re-emerging pathogen in Germany. The pathogen can easily be identified using PCR assays. Isolates can also be identified within one hour using MALDI-TOF MS in laboratories where specific PCR assays are not established. Further analysis of strains requires genotyping tools. The results from this study indicate a geographical segregation of the phylogenetic clade B.I and B.IV, where B.I strains localize primarily within eastern Germany and B.IV strains within western Germany. This phylogeographical pattern coincides with the distribution of biovar I (erythromycin sensitive) and biovar II (erythromycin resistance) strains. When time and costs are limiting parameters small numbers of isolates can be analysed using PCR assays combined with DNA sequencing with a focus on genetic loci that are most likely discriminatory among strains found in a specific area. In perspective, whole genome data will have to be investigated especially when terrorist attack strains need to be tracked to their genetic and geographical sources.


Asunto(s)
Francisella tularensis/clasificación , Francisella tularensis/genética , Variación Genética , Liebres/microbiología , Enfermedades de los Roedores/microbiología , Tularemia/veterinaria , Estructuras Animales/microbiología , Animales , Antibacterianos/farmacología , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana , Eritromicina/farmacología , Francisella tularensis/aislamiento & purificación , Genotipo , Alemania , Pruebas de Sensibilidad Microbiana , Repeticiones de Minisatélite , Tipificación Molecular , Filogeografía , Reacción en Cadena de la Polimerasa , Tularemia/microbiología
19.
Environ Microbiol ; 15(2): 634-45, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23253075

RESUMEN

Previous studies of the causative agent of tularaemia, Francisella tularensis have identified phylogeographic patterns suggestive of environmental maintenance reservoirs. To investigate the phylogeography of tularaemia in Sweden, we selected 163 clinical isolates obtained during 1995-2009 in 10 counties and sequenced one isolate's genome to identify new genetic markers. An improved typing scheme based on two indels and nine SNPs was developed using hydrolysis or TaqMan MGB probe assays. The results showed that much of the known global genetic diversity of F. tularensis subsp. holarctica is present in Sweden. Thirteen of the 163 isolates belonged to a new genetic group that is basal to all other known members of the major genetic clade B.I, which is spread across the Eurosiberian region. One hundred and twenty-five of the 163 Swedish isolates belonged to B.I, but individual clades' frequencies differed from county to county (P < 0.001). Subsequent analyses revealed a correlation between genotype variation over time and recurrent outbreaks at specific places, supporting the 'maintenance reservoir' environmental maintenance hypothesis. Most importantly, the findings reveal the presence of diverse source populations of F. tularensis subsp. holarctica in Sweden and suggest a historical spread of the disease from Scandinavia to other parts of Eurosiberia.


Asunto(s)
Francisella tularensis/clasificación , Francisella tularensis/genética , Tularemia/microbiología , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Variación Genética , Genoma Bacteriano/genética , Genotipo , Humanos , Filogeografía , Países Escandinavos y Nórdicos , Suecia , Factores de Tiempo , Tularemia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...