Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746431

RESUMEN

T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4 + T cells exhibited increased T helper 1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and LCK upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single cell-RNA sequencing suggested that Flot2 - null CD4 + T cells follow a similar route of activation as wild-type CD4 + T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naïve CD4 + T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.

3.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756544

RESUMEN

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glucólisis , Aterosclerosis/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
4.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37581941

RESUMEN

DNASE1L3, an enzyme highly expressed in DCs, is functionally important for regulating autoimmune responses to self-DNA and chromatin. Deficiency of DNASE1L3 leads to development of autoimmune diseases in both humans and mice. However, despite the well-established causal relationship between DNASE1L3 and immunity, little is known about the involvement of DNASE1L3 in regulation of antitumor immunity, the foundation of modern antitumor immunotherapy. In this study, we identify DNASE1L3 as a potentially new regulator of antitumor immunity and a tumor suppressor in colon cancer. In humans, DNASE1L3 is downregulated in tumor-infiltrating DCs, and this downregulation is associated with poor patient prognosis and reduced tumor immune cell infiltration in many cancer types. In mice, Dnase1l3 deficiency in the tumor microenvironment enhances tumor formation and growth in several colon cancer models. Notably, the increased tumor formation and growth in Dnase1l3-deficient mice are associated with impaired antitumor immunity, as evidenced by a substantial reduction of cytotoxic T cells and a unique subset of DCs. Consistently, Dnase1l3-deficient DCs directly modulate cytotoxic T cells in vitro. To our knowledge, our study unveils a previously unknown link between DNASE1L3 and antitumor immunity and further suggests that restoration of DNASE1L3 activity may represent a potential therapeutic approach for anticancer therapy.


Asunto(s)
Neoplasias del Colon , Humanos , Ratones , Animales , Neoplasias del Colon/metabolismo , Cromatina/metabolismo , Inmunoterapia , Linfocitos T Citotóxicos , Microambiente Tumoral , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo
5.
Sci Rep ; 13(1): 12911, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558924

RESUMEN

Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity.


Asunto(s)
Citocinas , Predisposición Genética a la Enfermedad , Humanos , Alelos , Citocinas/genética , Linfocitos T CD8-positivos , Estudios de Casos y Controles , Proteínas de Unión al GTP/genética , Polimorfismo de Nucleótido Simple
6.
Am J Respir Cell Mol Biol ; 69(6): 623-637, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37523502

RESUMEN

Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects (n = 13) and patients with COVID-19 (n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.


Asunto(s)
Células Epiteliales Alveolares , COVID-19 , Humanos , COVID-19/genética , COVID-19/metabolismo , Pulmón , Células Epiteliales/metabolismo , Análisis de Secuencia de ARN
7.
Front Genet ; 14: 1173676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415598

RESUMEN

Introduction: Asthma is a chronic disease of the airways that impairs normal breathing. The etiology of asthma is complex and involves multiple factors, including the environment and genetics, especially the distinct genetic architecture associated with ancestry. Compared to early-onset asthma, little is known about genetic predisposition to late-onset asthma. We investigated the race/ethnicity-specific relationship among genetic variants within the major histocompatibility complex (MHC) region and late-onset asthma in a North Carolina-based multiracial cohort of adults. Methods: We stratified all analyses by self-reported race (i.e., White and Black) and adjusted all regression models for age, sex, and ancestry. We conducted association tests within the MHC region and performed fine-mapping analyses conditioned on the race/ethnicity-specific lead variant using whole-genome sequencing (WGS) data. We applied computational methods to infer human leukocyte antigen (HLA) alleles and residues at amino acid positions. We replicated findings in the UK Biobank. Results: The lead signals, rs9265901 on the 5' end of HLA-B, rs55888430 on HLA-DOB, and rs117953947 on HCG17, were significantly associated with late-onset asthma in all, White, and Black participants, respectively (OR = 1.73, 95%CI: 1.31 to 2.14, p = 3.62 × 10-5; OR = 3.05, 95%CI: 1.86 to 4.98, p = 8.85 × 10-6; OR = 19.5, 95%CI: 4.37 to 87.2, p = 9.97 × 10-5, respectively). For the HLA analysis, HLA-B*40:02 and HLA-DRB1*04:05, HLA-B*40:02, HLA-C*04:01, and HLA-DRB1*04:05, and HLA-DRB1*03:01 and HLA-DQB1 were significantly associated with late-onset asthma in all, White, and Black participants. Conclusion: Multiple genetic variants within the MHC region were significantly associated with late-onset asthma, and the associations were significantly different by race/ethnicity group.

8.
Blood Adv ; 7(20): 6253-6265, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37477592

RESUMEN

In vitro models to study simultaneous development of different human immune cells and hematopoietic lineages are lacking. We identified and characterized, using single-cell methods, an in vitro stromal cell-free culture system of human hematopoietic stem and progenitor cell (HSPC) differentiation that allows concurrent development of multiple immune cell lineages. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor influencing many biological processes in diverse cell types. Using this in vitro model, we found that AHR activation by the highly specific AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, drives differentiation of human umbilical cord blood-derived CD34+ HSPCs toward monocytes and granulocytes with a significant decrease in lymphoid and megakaryocyte lineage specification that may lead to reduced immune competence. To our knowledge, we also discovered for the first time, using single-cell modalities, that AHR activation decreased the expression of BCL11A and IRF8 in progenitor cells, which are critical genes involved in hematopoietic lineage specification processes at both transcriptomic and protein levels. Our in vitro model of hematopoiesis, coupled with single-cell tools, therefore allows for a better understanding of the role played by AHR in modulating hematopoietic differentiation.


Asunto(s)
Células Madre Hematopoyéticas , Receptores de Hidrocarburo de Aril , Humanos , Células Madre Hematopoyéticas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Hematopoyesis , Diferenciación Celular
9.
Sci Rep ; 13(1): 7073, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127649

RESUMEN

Cranial neural crest cells (cNCC) are a multipotent embryonic cell population that give rise to a diverse set of cell types. These cells are particularly vulnerable to external metabolic stressors, as exemplified by the association between maternal hyperglycemia and congenital malformations. We were interested in studying the effect of various concentrations of glucose and pyruvate on cNCC metabolism, migration, and differentiation using an established murine neural crest cell model (O9-1). We unexpectedly observed a pattern of gene expression suggestive of cholesterol biosynthesis induction under glucose depletion conditions in O9-1 cells. We further showed that treatment with two different cholesterol synthesis inhibitors interfered with cell migration and differentiation, inhibiting chondrogenesis while enhancing smooth muscle cell differentiation. As congenital arhinia (absent external nose), a malformation caused by mutations in SMCHD1, appears to represent, in part, a defect in cNCC, we were also interested in investigating the effects of glucose and cholesterol availability on Smchd1 expression in O9-1 cells. Smchd1 expression was induced under high glucose conditions whereas cholesterol synthesis inhibitors decreased Smchd1 expression during chondrogenesis. These data highlight a novel role for cholesterol biosynthesis in cNCC physiology and demonstrate that human phenotypic variability in SMCHD1 mutation carriers may be related, in part, to SMCHD1's sensitivity to glucose or cholesterol dosage during development.


Asunto(s)
Glucosa , Cresta Neural , Ratones , Animales , Humanos , Diferenciación Celular , Glucosa/metabolismo , Proteínas Cromosómicas no Histona/metabolismo
10.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821369

RESUMEN

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets. Here, using Ch25h-/- mice and exogenous 25HC in lung injury models, we provide evidence that 25HC sustains proinflammatory cytokines in the airspace and augments lung injury, at least in part, by inducing LXR-independent endoplasmic reticulum stress and endothelial leak. Suggesting an autocrine effect in endothelium, inhaled LPS upregulates pulmonary endothelial Ch25h, and non-hematopoietic Ch25h deletion is sufficient to confer lung protection. In patients with acute respiratory distress syndrome, airspace 25HC and alveolar macrophage CH25H were associated with markers of microvascular leak, endothelial activation, endoplasmic reticulum stress, inflammation, and clinical severity. Taken together, our findings suggest that 25HC deriving from and acting on different cell types in the lung communicates distinct, temporal LXR-independent and -dependent signals to regulate inflammatory homeostasis.


Asunto(s)
Lesión Pulmonar Aguda , Hidroxicolesteroles , Animales , Ratones , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Macrófagos Alveolares/metabolismo , Lesión Pulmonar Aguda/inducido químicamente
11.
Nat Commun ; 12(1): 5029, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413303

RESUMEN

Dendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b+ DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C+, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo. Single cell RNA-sequencing (scRNA-Seq) of lung cDC2 indicates 5 distinct clusters. Pseudotime analysis of scRNA-Seq data and adoptive transfer experiments with purified cDC2 subpopulations suggest stepwise developmental progression of immature Ly-6C+Ly-6A/E+ cDC2 to mature Ly-6C-CD301b+ lung resident cDC2 lacking Ccr7 expression, which then further mature into CD200+ migratory cDC2 expressing Ccr7. Partially mature Ly-6C+Ly-6A/E-CD301b- cDC2, which express Il1b, promote Th17 differentiation. By contrast, CD200+ mature cDC2 strongly induce Th2, but not Th17, differentiation. Thus, Th17 and Th2 differentiation are promoted by lung cDC2 at distinct stages of maturation.


Asunto(s)
Asma/inmunología , Antígeno CD11b/inmunología , Células Dendríticas/inmunología , Pulmón/inmunología , Células Th17/inmunología , Células Th2/inmunología , Traslado Adoptivo/métodos , Animales , Asma/metabolismo , Asma/patología , Secuencia de Bases , Antígeno CD11b/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de la Célula Individual/métodos , Células Th17/citología , Células Th2/citología
12.
Cell Stem Cell ; 28(4): 748-763.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33450185

RESUMEN

Histone crotonylation is a non-acetyl histone lysine modification that is as widespread as acetylation. However, physiological functions associated with histone crotonylation remain almost completely unknown. Here we report that histone crotonylation is crucial for endoderm differentiation. We demonstrate that key crotonyl-coenzyme A (CoA)-producing enzymes are specifically induced in endodermal cells during differentiation of human embryonic stem cells (hESCs) in vitro and in mouse embryos, where they function to increase histone crotonylation and enhance endodermal gene expression. Chemical enhancement of histone crotonylation promotes endoderm differentiation of hESCs, whereas deletion of crotonyl-CoA-producing enzymes reduces histone crotonylation and impairs meso/endoderm differentiation in vitro and in vivo. Our study uncovers a histone crotonylation-mediated mechanism that promotes endodermal commitment of pluripotent stem cells, which may have important implications for therapeutic strategies against a number of human diseases.


Asunto(s)
Histonas , Células Madre Embrionarias Humanas , Acetilación , Animales , Diferenciación Celular , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Lisina/metabolismo , Ratones , Procesamiento Proteico-Postraduccional
13.
Nat Immunol ; 22(3): 312-321, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33510463

RESUMEN

Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon. Here, we show that mice lacking the GTPase IRGM1 (IRGM homolog) exhibited a type I interferonopathy with autoimmune features. Irgm1 deletion impaired the execution of mitophagy with cell-specific consequences. In fibroblasts, mitochondrial DNA soiling of the cytosol induced cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent type I interferon, whereas in macrophages, lysosomal Toll-like receptor 7 was activated. In vivo, Irgm1-/- tissues exhibited mosaic dependency upon nucleic acid receptors. Whereas salivary and lacrimal gland autoimmune pathology was abolished and lung pathology was attenuated by cGAS and STING deletion, pancreatic pathology remained unchanged. These findings reveal fundamental connections between mitochondrial quality control and tissue-selective autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Fibroblastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Mitofagia , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Células Cultivadas , Fibroblastos/inmunología , Fibroblastos/patología , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
14.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573980

RESUMEN

BACKGROUNDHMG-CoA reductase inhibitors (statins) are prescribed to millions of people. Statins are antiinflammatory independent of their cholesterol-reducing effects. To date, most reports on the immune effects of statins have assayed a narrow array of variables and have focused on cell lines, rodent models, or patient cohorts. We sought to define the effect of rosuvastatin on the "immunome" of healthy, normocholesterolemic subjects.METHODSWe conducted a prospective study of rosuvastatin (20 mg/d × 28 days) in 18 statin-naive adults with LDL cholesterol <130 mg/dL. A panel of >180 immune/biochemical/endocrinologic variables was measured at baseline and on days 14, 28, and 42 (14 days after drug withdrawal). Drug effect was evaluated using linear mixed-effects models. Potential interactions between drug and baseline high-sensitivity C-reactive protein (hsCRP) were evaluated.RESULTSA wide array of immune measures changed (nominal P < 0.05) during rosuvastatin treatment, although the changes were modest in magnitude, and few met an FDR of 0.05. Among changes noted were a concordant increase in proinflammatory cytokines (IFN-γ, IL-1ß, IL-5, IL-6, and TNF-α) and peripheral blood neutrophil frequency, and a decline in activated Treg frequency. Several drug effects were significantly modified by baseline hsCRP, and some did not resolve after drug withdrawal. Among other unexpected rosuvastatin effects were changes in erythrocyte indices, glucose-regulatory hormones, CD8+ T cells, and haptoglobin.CONCLUSIONRosuvastatin induces modest changes in immunologic and metabolic measures in normocholesterolemic subjects, with several effects dependent on baseline CRP. Future, larger studies are warranted to validate these changes and their physiological significance.TRIAL REGISTRATIONClinicalTrials.gov NCT01200836.FUNDINGThis research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES102005), and the trans-NIH Center for Human Immunology.


Asunto(s)
LDL-Colesterol/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Sistema Inmunológico/efectos de los fármacos , Rosuvastatina Cálcica/farmacología , Adulto , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Femenino , Voluntarios Sanos , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
15.
J Immunol ; 203(5): 1208-1217, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315887

RESUMEN

The CD4Cre transgenic model has been widely used for T cell-specific gene manipulation. We report unexpected highly efficient Cre-mediated recombination in alveolar macrophages (AMFs), bronchial epithelial cells (BECs), and alveolar epithelial cells (AECs) in this strain of mice. Different from CD4 T cells, AMFs, AECs, and BECs do not express detectable Cre protein, suggesting that Cre protein is either very transiently expressed in these cells or only expressed in their precursors. Mice carrying a conditional constitutively active KRas (caKRas) allele and the CD4Cre transgene contain not only hyperactivated T cells but also develop severe AMF accumulation, AEC and BEC hyperplasia, and adenomas in the lung, leading to early lethality correlated with caKRas expression in these cells. We propose that caKRas-CD4Cre mice represent, to our knowledge, a novel model of proliferative pneumonitis involving macrophages and epithelial cells and that the CD4Cre model may offer unique usefulness for studying gene functions simultaneously in multilineages in the lung. Our observations, additionally, suggest that caution in data interpretation is warranted when using the CD4Cre transgenic model for T cell-specific gene manipulation, particularly when lung pathophysiological status is being examined.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Antígenos CD4/genética , Integrasas/genética , Macrófagos Alveolares/metabolismo , Neumonía/etiología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Hiperplasia , Ratones , Ratones Endogámicos C57BL , Recombinación Genética , Transgenes
16.
Nature ; 565(7737): 101-105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568299

RESUMEN

A defining feature of adaptive immunity is the development of long-lived memory T cells to curtail infection. Recent studies have identified a unique stem-like T-cell subset amongst exhausted CD8-positive T cells in chronic infection1-3, but it remains unclear whether CD4-positive T-cell subsets with similar features exist in chronic inflammatory conditions. Amongst helper T cells, TH17 cells have prominent roles in autoimmunity and tissue inflammation and are characterized by inherent plasticity4-7, although how such plasticity is regulated is poorly understood. Here we demonstrate that TH17 cells in a mouse model of autoimmune disease are functionally and metabolically heterogeneous; they contain a subset with stemness-associated features but lower anabolic metabolism, and a reciprocal subset with higher metabolic activity that supports transdifferentiation into TH1-like cells. These two TH17-cell subsets are defined by selective expression of the transcription factors TCF-1 and T-bet, and by discrete levels of CD27 expression. We also identify signalling via the kinase complex mTORC1 as a central regulator of TH17-cell fate decisions by coordinating metabolic and transcriptional programmes. TH17 cells with disrupted mTORC1 signalling or anabolic metabolism fail to induce autoimmune neuroinflammation or to develop into TH1-like cells, but instead upregulate TCF-1 expression and acquire stemness-associated features. Single-cell RNA sequencing and experimental validation reveal heterogeneity in fate-mapped TH17 cells, and a developmental arrest in the TH1 transdifferentiation trajectory upon loss of mTORC1 activity or metabolic perturbation. Our results establish that the dichotomy of stemness and effector function underlies the heterogeneous TH17 responses and autoimmune pathogenesis, and point to previously unappreciated metabolic control of plasticity in helper T cells.


Asunto(s)
Transdiferenciación Celular , Células Madre/citología , Células Madre/metabolismo , Células Th17/citología , Células Th17/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Modelos Animales de Enfermedad , Femenino , Memoria Inmunológica/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteína Reguladora Asociada a mTOR/deficiencia , Proteína Reguladora Asociada a mTOR/genética , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Células Madre/inmunología , Factor 1 de Transcripción de Linfocitos T/biosíntesis , Factor 1 de Transcripción de Linfocitos T/metabolismo , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/metabolismo , Células Th17/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
17.
Methods Mol Biol ; 1803: 385-396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29882151

RESUMEN

An emerging emphasis on mechanism-focused and human-relevant alternatives to animal use in toxicology underlies the toxicology testing in the twenty-first-century initiative. Herein we describe in vitro high-throughput screening programs seeking to address this goal, as well as strategies established to integrate assay results to build weight of evidence in support of hazard assessment. Furthermore, we discuss unique challenges facing the application of such alternatives for assessing immunotoxicity given the complexity of immune responses. Addressing these challenges will require the development of novel in vitro assays that evaluate well-characterized biochemical processes involved in immune response to help inform on putative adverse outcomes in vivo.


Asunto(s)
Sistema Inmunológico/metabolismo , Pruebas de Toxicidad/historia , Pruebas de Toxicidad/métodos , Animales , Ensayos Analíticos de Alto Rendimiento , Historia del Siglo XXI , Humanos , Inmunización
18.
Nature ; 558(7708): 141-145, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29849151

RESUMEN

Dendritic cells orchestrate the crosstalk between innate and adaptive immunity. CD8α+ dendritic cells present antigens to CD8+ T cells and elicit cytotoxic T cell responses to viruses, bacteria and tumours 1 . Although lineage-specific transcriptional regulators of CD8α+ dendritic cell development have been identified 2 , the molecular pathways that selectively orchestrate CD8α+ dendritic cell function remain elusive. Moreover, metabolic reprogramming is important for dendritic cell development and activation3,4, but metabolic dependence and regulation of dendritic cell subsets are largely uncharacterized. Here we use a data-driven systems biology algorithm (NetBID) to identify a role of the Hippo pathway kinases Mst1 and Mst2 (Mst1/2) in selectively programming CD8α+ dendritic cell function and metabolism. Our NetBID analysis reveals a marked enrichment of the activities of Hippo pathway kinases in CD8α+ dendritic cells relative to CD8α- dendritic cells. Dendritic cell-specific deletion of Mst1/2-but not Lats1 and Lats2 (Lats1/2) or Yap and Taz (Yap/Taz), which mediate canonical Hippo signalling-disrupts homeostasis and function of CD8+ T cells and anti-tumour immunity. Mst1/2-deficient CD8α+ dendritic cells are impaired in presentation of extracellular proteins and cognate peptides to prime CD8+ T cells, while CD8α- dendritic cells that lack Mst1/2 have largely normal function. Mechanistically, compared to CD8α- dendritic cells, CD8α+ dendritic cells exhibit much stronger oxidative metabolism and critically depend on Mst1/2 signalling to maintain bioenergetic activities and mitochondrial dynamics for their functional capacities. Further, selective expression of IL-12 by CD8α+ dendritic cells depends on Mst1/2 and the crosstalk with non-canonical NF-κB signalling. Our findings identify Mst1/2 as selective drivers of CD8α+ dendritic cell function by integrating metabolic activity and cytokine signalling, and highlight that the interplay between immune signalling and metabolic reprogramming underlies the unique functions of dendritic cell subsets.


Asunto(s)
Antígenos CD8/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Algoritmos , Animales , Antígenos CD8/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/citología , Vía de Señalización Hippo , Homeostasis , Interleucina-12/inmunología , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasa 3 , Proteínas Supresoras de Tumor
19.
J Exp Med ; 214(9): 2629-2647, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28784627

RESUMEN

Myelopoiesis is necessary for the generation of mature myeloid cells during homeostatic turnover and immunological insults; however, the metabolic requirements for this process remain poorly defined. Here, we demonstrate that myelopoiesis, including monocyte and macrophage differentiation, requires mechanistic target of rapamycin complex 1 (mTORC1) signaling and anabolic metabolism. Loss of mTORC1 impaired myelopoiesis under steady state and dampened innate immune responses against Listeria monocytogenes infection. Stimulation of hematopoietic progenitors with macrophage colony-stimulating factor (M-CSF) resulted in mTORC1-dependent anabolic metabolism, which in turn promoted expression of M-CSF receptor and transcription factors PU.1 and IRF8, thereby constituting a feed-forward loop for myelopoiesis. Mechanistically, mTORC1 engaged glucose metabolism and initiated a transcriptional program involving Myc activation and sterol biosynthesis after M-CSF stimulation. Perturbation of glucose metabolism or disruption of Myc function or sterol biosynthesis impaired myeloid differentiation. Integrative metabolomic and genomic profiling further identified one-carbon metabolism as a central node in mTORC1-dependent myelopoiesis. Therefore, the interplay between mTORC1 signaling and metabolic reprogramming underlies M-CSF-induced myelopoiesis.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/fisiología , Complejos Multiproteicos/fisiología , Mielopoyesis/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas Portadoras/fisiología , Técnicas de Sustitución del Gen , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Ratones Endogámicos C57BL , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Transducción de Señal/fisiología
20.
Toxicol Sci ; 145(2): 214-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26008184

RESUMEN

Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Toxicología/métodos , Xenobióticos/toxicidad , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Medición de Riesgo , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Células del Estroma/metabolismo , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...