Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 2471, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941975

RESUMEN

To combine the advantages of ultrafast femtosecond nano-optics with an on-chip communication scheme, optical signals with a frequency of several hundreds of THz need to be down-converted to coherent electronic signals propagating on-chip. So far, this has not been achieved because of the overall slow response time of nanoscale electronic circuits. Here, we demonstrate that 14 fs optical pulses in the near-infrared can drive electronic on-chip circuits with a prospective bandwidth up to 10 THz. The corresponding electronic pulses propagate in macroscopic striplines on a millimeter scale. We exploit femtosecond photoswitches based on asymmetric, nanoscale metal junctions to drive the pulses. The non-linear ultrafast response is based on a plasmonically enhanced, multiphoton absorption resulting in a field emission of ballistic hot electrons propagating across the nanoscale junctions. Our results pave the way towards femtosecond electronics integrated in wafer-scale THz circuits.

2.
Nat Commun ; 6: 6617, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25808213

RESUMEN

In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA