Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(13): 6124-6131, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37347949

RESUMEN

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS2 monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.

2.
Adv Mater ; 35(27): e2204120, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35817468

RESUMEN

Van der Waals (vdW) materials at their 2D limit are diverse, flexible, and unique laboratories to study fundamental quantum phenomena and their future applications. Their novel properties rely on their pronounced Coulomb interactions, variety of crystal symmetries and spin-physics, and the ease of incorporation of different vdW materials to form sophisticated heterostructures. In particular, the excited state properties of many 2D semiconductors and semi-metals are relevant for their technological applications, particularly those that can be induced by light. In this paper, the recent advances made in studying out-of-equilibrium, light-induced, phenomena in these materials are reviewed using powerful, surface-sensitive, time-resolved photoemission-based techniques, with a particular emphasis on the emerging multi-dimensional photoemission spectroscopy technique of time-resolved momentum microscopy. The advances this technique has enabled in studying the nature and dynamics of occupied excited states in these materials are discussed. Then, the future research directions opened by these scientific and instrumental advancements are projected for studying the physics of 2D materials and the opportunities to engineer their band-structure and band-topology by laser fields.

3.
Science ; 376(6591): 406-410, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35446643

RESUMEN

Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.

4.
Nature ; 603(7900): 247-252, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264760

RESUMEN

Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation1-4, single-photon emission and other quantum information applications5-7. Yet, despite extensive optical spectroscopic investigations8-12, critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe2/MoS2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.

5.
Nano Lett ; 21(8): 3443-3450, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33852295

RESUMEN

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

6.
Phys Rev Lett ; 123(24): 247402, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922842

RESUMEN

We report light emission around 1 eV (1240 nm) from heterostructures of MoS_{2} and WSe_{2} transition metal dichalcogenide monolayers. We identify its origin in an interlayer exciton (ILX) by its wide spectral tunability under an out-of-plane electric field. From the static dipole moment of the state, its temperature and twist-angle dependence, and comparison with electronic structure calculations, we assign this ILX to the fundamental interlayer transition between the K valleys in this system. Our findings gain access to the interlayer physics of the intrinsically incommensurate MoS_{2}/WSe_{2} heterostructure, including moiré and valley pseudospin effects, and its integration with silicon photonics and optical fiber communication systems operating at wavelengths longer than 1150 nm.

7.
Nat Nanotechnol ; 13(11): 994-1003, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30397296

RESUMEN

Van der Waals heterostructures are synthetic quantum materials composed of stacks of atomically thin two-dimensional (2D) layers. Because the electrons in the atomically thin 2D layers are exposed to layer-to-layer coupling, the properties of van der Waals heterostructures are defined not only by the constituent monolayers, but also by the interactions between the layers. Many fascinating electrical, optical and magnetic properties have recently been reported in different types of van der Waals heterostructures. In this Review, we focus on unique excited-state dynamics in transition metal dichalcogenide (TMDC) heterostructures. TMDC monolayers are the most widely studied 2D semiconductors, featuring prominent exciton states and accessibility to the valley degree of freedom. Many TMDC heterostructures are characterized by a staggered band alignment. This band alignment has profound effects on the evolution of the excited states in heterostructures, including ultrafast charge transfer between the layers, the formation of interlayer excitons, and the existence of long-lived spin and valley polarization in resident carriers. Here we review recent experimental and theoretical efforts to elucidate electron dynamics in TMDC heterostructures, extending from timescales of femtoseconds to microseconds, and comment on the relevance of these effects for potential applications in optoelectronic, valleytronic and spintronic devices.

8.
Opt Express ; 23(23): 29940-53, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26698476

RESUMEN

We present a numerical study of coherent control in a room temperature InAs/InP quantum dot (QD) semiconductor optical amplifier (SOA) using shaped ultra-short pulses. Both the gain and absorption regimes were analyzed for pulses with central wavelengths lying on either side of the inhomogeneously broadened gain spectrum. The numerical experiments predict that in the gain regime the coherent interactions between a QD SOA and a pulse can be controlled by incorporating a quadratic spectral phase (QSP) in the pulse profile. The sequential interaction with the gain medium of different spectral components of the pulse results in either suppression or enhancement of the coherent signatures on the pulse profile depending upon their proximity to the gain spectrum peak. In the absorption regime, positive QSP induces a negative chirp that adds up to that of a two photon absorption induced Kerr-like effect resulting in pulse compression while negative QSP enhances dispersive broadening of the pulse.

9.
Opt Express ; 21(22): 26786-96, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216900

RESUMEN

We report direct observations of Rabi oscillations and self-induced transparency in a quantum dot optical amplifier operating at room temperature. The experiments make use of pulses whose durations are shorter than the coherence time which are characterized using Cross-Frequency-Resolved Optical Gating. A numerical model which solves the Maxwell and Schrödinger equations and accounts for the inhomogeneously broadened nature of the quantum dot gain medium confirms the experimental results. The model is also used to explain the relationship between the observability of Rabi oscillations, the pulse duration and the homogeneous and inhomogeneous spectral widths of the semiconductor.

10.
Opt Express ; 20(6): 5987-92, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418475

RESUMEN

We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed and quantified using multi-color pump-probe measurements and shows a highly efficient nonlinear two photon excitation process which is larger by more than an order of magnitude compared to common quantum well and bulk gain media. The dynamic response of the nonlinearly induced laser line is characterized by spectrally resolved temporal response measurements, while changes incurring upon propagation in the stimulating short pulse itself are characterized by frequency resolved optical gating (FROG).


Asunto(s)
Amplificadores Electrónicos , Arsenicales/química , Indio/química , Rayos Láser , Nanotubos/química , Oscilometría/instrumentación , Fosfinas/química , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanotubos/ultraestructura , Dinámicas no Lineales , Fotones
11.
Opt Express ; 20(1): 347-53, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22274358

RESUMEN

We describe direct measurements at a high temporal resolution of the changes experienced by the phase and amplitude of an ultra-short pulse upon propagation through an inhomogenously broadened semiconductor nanostructured optical gain medium. Using a cross frequency-resolved optical gating technique, we analyze 150 fs-wide pulses propagating along an InP based quantum dash optical amplifier in both the quasi-linear and saturated regimes. For very large electrical and optical excitations, a second, trailing peak is generated and enhanced by a unique two-photon-induced amplification process.


Asunto(s)
Amplificadores Electrónicos , Arsenicales/química , Indio/química , Modelos Químicos , Fosfinas/química , Puntos Cuánticos , Simulación por Computador , Luz , Fotones , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...