Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell Signal ; 124: 111410, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270918

RESUMEN

Angiotensin II receptors, Type 1 (AT1R) and Type 2 (AT2R) are 7TM receptors that play critical roles in both the physiological and pathophysiological regulation of the cardiovascular system. While AT1R blockers (ARBs) have proven beneficial in managing cardiac, vascular and renal maladies they cannot completely halt and reverse the progression of pathologies. Numerous experimental and animal studies have demonstrated that ß-arrestin biased AT1R-ligands (such as SII-AngII, S1I8, TRV023, and TRV027) offer cardiovascular benefits by blocking the G protein signaling while retaining the ß-arrestin signaling. However, these ligands failed to show improvement in heart-failure outcome over the placebo in a phase IIb clinical trial. One major limitation of current ß-arrestin biased AT1R-ligands is that they are peptides with short half-lives, limiting their long-term efficacy in patients. Additionally, ß-arrestin biased AT1R-ligand peptides, may inadvertently block AT2R, a promiscuous receptor, potentially negating its beneficial effects in post-myocardial infarction (MI) patients. Therefore, developing a small molecule ß-arrestin biased AT1R-ligand with a longer half-life and specificity to AT1R could be more effective in treating heart failure. This approach has the potential to revolutionize the treatment of cardiovascular diseases by offering more sustained and targeted therapeutic effects.

2.
Nat Commun ; 15(1): 6696, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107277

RESUMEN

Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing ß1- versus ß2-adrenergic receptors (ß1AR and ß2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of ß2AR, but not ß1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on ß2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical ß2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.


Asunto(s)
Microbioma Gastrointestinal , Glutamina , Miocitos Cardíacos , Receptores Adrenérgicos beta 2 , Animales , Humanos , Masculino , Ratones , Regulación Alostérica , Glutamina/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/microbiología , Células HEK293 , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética
3.
Proc Natl Acad Sci U S A ; 121(31): e2314760121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052834

RESUMEN

Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.


Asunto(s)
Amoníaco , Proteínas de Transporte de Membrana , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Animales , Humanos , Ratones , Amoníaco/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/genética , Ratones Noqueados , Músculo Esquelético/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
4.
Hypertension ; 80(2): 385-402, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36440576

RESUMEN

BACKGROUND: Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of ß-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS: We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS: AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS: TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel ß-arrestin-biased AT1R ligands may yield promising drugs to combat AA.


Asunto(s)
Aneurisma de la Aorta , Animales , Femenino , Masculino , Ratones , Angiotensina II/farmacología , Aorta/metabolismo , beta-Arrestinas , Ratones Noqueados , Receptor de Angiotensina Tipo 1/metabolismo
5.
Drug Deliv ; 29(1): 2759-2772, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029014

RESUMEN

Recently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction. Therefore, loading nano-LDL particles' core with pyrimidine heterocyclic anticancer agents will increase cancer cytotoxic activity targeting tubulin protein. First, by mimicking the native LDL particle's metabolic pathway, and second the agent's chemical functional groups like the native amino acids cytosine and thymine structures will not be recognized as a foreign entity from the cell's immune system. Nano-LDL particles will internalize through LDL-receptors endocytosis and transport the anticancer agent into the middle of the cancer cell, reducing its side effects on other healthy cells. Generally, the data revealed that pyrimidine heterocyclic anticancer agents' size is at the nano level. Agents' morphological examination showed nanofibers, thin sheets, clusters, and rod-like structures. LDL particles' size became bigger after loading with pyrimidine heterocyclic anticancer agents and ranged between 121.6 and 1045 nm. Then, particles were tested for their cytotoxicity against breast (MDA468) and prostate (DU145) cancer cell lines as surrogate models with dose-response study 10, 5, 1 µM. The IC50 values of the agents against DU145 and MDA468 possessed cell growth inhibition even at the 1 µM concentration ranges of 3.88 ± 1.05 µM and 3.39 ± 0.97 µM, respectively. In sum, nano-LDL particles proved their efficiency as active drug delivery vehicles to target tubulin in cancer cells.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Humanos , Lipoproteínas LDL , Microtúbulos , Neoplasias/tratamiento farmacológico , Pirimidinas , Tubulina (Proteína)
6.
Drug Deliv ; 29(1): 2206-2216, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35815732

RESUMEN

Cancer is a leading cause of death worldwide and affects society in terms of the number of lives lost. Current cancer treatments are based on conventional chemotherapy which is nonspecific in targeting cancer. Therefore, intensive efforts are underway to better target cancer-specific cells while minimizing the side effects on healthy tissues by using LDL particles as active drug delivery vehicles. The goal is to encapsulate anticancer agents thiosemicarbazone metal-ligand complexes into LDL particles to increase the cytotoxic effect of the agent by internalization through LDL receptors into MCF7, A549, and C42 cancer cell lines as segregate models for biological evaluations targeting tubulin. Zeta potential data of LDL-particles encapsulated anticancer agents showed an acceptable diameter range between 66-91 nm and uniform particle morphology. The results showed cell proliferation reduction in all tested cell lines. The IC50 values of LDL encapsulated thiosemicarbazone metal-ligand complexes treated with MCF7, A549, and C42 ranged between 1.18-6.61 µM, 1.17-9.66 µM, and 1.01-6.62 µM, respectively. Western blot analysis showed a potent decrease in tubulin expression when the cell lines were treated with LDL particles encapsulated with thiosemicarbazone metal-ligand complexes as anticancer agents. In conclusion, the data provide strong evidence that LDL particles are used as an active drug delivery strategy for cancer therapy.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias de la Próstata , Tiosemicarbazonas , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Humanos , Ligandos , Lipoproteínas LDL , Pulmón , Masculino , Tiosemicarbazonas/farmacología , Tubulina (Proteína)
7.
Br J Pharmacol ; 179(18): 4461-4472, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35318654

RESUMEN

Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII.


Asunto(s)
Angiotensina II , Receptor de Angiotensina Tipo 1 , Angiotensina II/farmacología , Ligandos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2
8.
J Biol Chem ; 297(3): 101023, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343564

RESUMEN

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Asunto(s)
Genómica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Transcriptoma , Animales , Citometría de Flujo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
9.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380734

RESUMEN

While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.


Asunto(s)
Autoanticuerpos , Diseño de Fármacos , Receptor de Angiotensina Tipo 1/agonistas , Angiotensina II , Animales , Especificidad de Anticuerpos , Calcio/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Ligandos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Conejos , Receptores Opioides , Vasoconstricción/efectos de los fármacos
10.
J Membr Biol ; 254(3): 293-300, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33471142

RESUMEN

GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Regulación Alostérica , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
11.
Hypertension ; 77(2): 420-431, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249862

RESUMEN

Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through ß-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective ß-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R ß-arrestin pathways may be exploitable therapeutically.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Desoxicorticosterona/farmacología , Hipertensión/inducido químicamente , Neuronas/efectos de los fármacos , Receptor de Angiotensina Tipo 1/agonistas , beta-Arrestinas/agonistas , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Línea Celular , Hipertensión/metabolismo , Losartán/farmacología , Ratones , Neuronas/metabolismo , Oligopéptidos/farmacología , Sistema Renina-Angiotensina/efectos de los fármacos
13.
EBioMedicine ; 58: 102907, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32771682

RESUMEN

BACKGROUND: SARS-CoV-2 enters cells by binding of its spike protein to angiotensin-converting enzyme 2 (ACE2). Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) have been reported to increase ACE2 expression in animal models, and worse outcomes are reported in patients with co-morbidities commonly treated with these agents, leading to controversy during the COVID-19 pandemic over whether these drugs might be helpful or harmful. METHODS: Animal, in vitro and clinical data relevant to the biology of the renin-angiotensin system (RAS), its interaction with the kallikrein-kinin system (KKS) and SARS-CoV-2, and clinical studies were reviewed. FINDINGS AND INTERPRETATION: SARS-CoV-2 hijacks ACE2to invade and damage cells, downregulating ACE2, reducing its protective effects and exacerbating injurious Ang II effects. However, retrospective observational studies do not show higher risk of infection with ACEI or ARB use. Nevertheless, study of the RAS and KKS in the setting of coronaviral infection may yield therapeutic targets.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina/farmacología , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Humanos , Sistema Calicreína-Quinina/efectos de los fármacos , Pandemias , Peptidil-Dipeptidasa A/genética , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2
14.
Curr Drug Targets ; 21(2): 125-131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31433752

RESUMEN

Homeostasis in the cardiovascular system is maintained by physiological functions of the Renin Angiotensin Aldosterone System (RAAS). In pathophysiological conditions, over activation of RAAS leads to an increase in the concentration of Angiotensin II (AngII) and over activation of Angiotensin Type 1 Receptor (AT1R), resulting in vasoconstriction, sodium retention and change in myocyte growth. It causes cardiac remodeling in the heart which results in left ventricular hypertrophy, dilation and dysfunction, eventually leading to Heart Failure (HF). Inhibition of RAAS using angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has shown to significantly reduce morbidity and mortality due to HF. ACEi have been shown to have higher drug withdrawal rates due to discomfort when compared to ARBs; therefore, ARBs are the preferred choice of physicians for the treatment of HF in combination with other anti-hypertensive agents. Currently, eight ARBs have been approved by FDA and are clinically used. Even though they bind to the same site of AT1R displacing AngII binding but clinical outcomes are significantly different. In this review, we described the clinical significance of each ARB in the treatment of HF and their clinical outcome.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Resultado del Tratamiento
16.
J Chem Inf Model ; 59(1): 373-385, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30608150

RESUMEN

We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.


Asunto(s)
Angiotensina II/farmacología , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/metabolismo , Entropía , Humanos , Modelos Moleculares , Conformación Proteica
17.
Methods Cell Biol ; 149: 215-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30616822

RESUMEN

Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.


Asunto(s)
Presión Sanguínea/fisiología , Vasos Sanguíneos/fisiología , Homeostasis , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Ligandos , Ratones , Receptor de Angiotensina Tipo 1/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3672-3684, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30251687

RESUMEN

BACKGROUND: The cardiac sodium channel Nav1.5 is essential for the physiological function of the heart and causes cardiac arrhythmias and sudden death when mutated. Many disease-causing mutations in Nav1.5 cause defects in protein trafficking, a cellular process critical to the targeting of Nav1.5 to cell surface. However, the molecular mechanisms underlying the trafficking of Nav1.5, in particular, the exit from the endoplasmic reticulum (ER) for cell surface trafficking, remain poorly understood. METHODS AND RESULTS: Here we investigated the role of the SAR1 GTPases in trafficking of Nav1.5. Overexpression of dominant-negative mutant SAR1A (T39N or H79G) or SAR1B (T39N or H79G) significantly reduces the expression level of Nav1.5 on cell surface, and decreases the peak sodium current density (INa) in HEK/Nav1.5 cells and neonatal rat cardiomyocytes. Simultaneous knockdown of SAR1A and SAR1B expression by siRNAs significantly reduces the INa density, whereas single knockdown of either SAR1A or SAR1B has minimal effect. Computer modeling showed that the three-dimensional structure of SAR1 is similar to RAN. RAN was reported to interact with MOG1, a small protein involved in regulation of the ER exit of Nav1.5. Co-immunoprecipitation showed that SAR1A or SAR1B interacted with MOG1. Interestingly, knockdown of SAR1A and SAR1B expression abolished the MOG1-mediated increases in both cell surface trafficking of Nav1.5 and the density of INa. CONCLUSIONS: These data suggest that SAR1A and SAR1B are the critical regulators of trafficking of Nav1.5. Moreover, SAR1A and SAR1B interact with MOG1, and are required for MOG1-mediated cell surface expression and function of Nav1.5.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Proteína de Unión al GTP ran/metabolismo , Animales , Animales Recién Nacidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Mutagénesis , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/economía , Técnicas de Placa-Clamp , Cultivo Primario de Células , Transporte de Proteínas/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP ran/química
19.
J Renin Angiotensin Aldosterone Syst ; 19(3): 1470320318789323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30126320

RESUMEN

HYPOTHESIS: Hyperglycemia decreases angiotensin-(1-7), the endogenous counter-regulator of angiotensin II in the retina. MATERIALS AND METHODS: The distribution and levels of retinal angiotensin II (Ang II) and angiotensin-(1-7) (Ang-(1-7)) were evaluated by confocal imaging and quantitative immunohistochemistry during the development of streptozotocin-induced diabetes in rats. RESULTS: In the nondiabetic eye, Ang II was localized to the endfeet of Müller cells, extending into the cellular processes of the inner plexiform layer and inner nuclear layer; Ang-(1-7) showed a wider distribution, extending from the foot plates of the Müller cells to the photoreceptor layer. Eyes from diabetic animals showed a higher intensity and extent of Ang II staining compared with nondiabetic eyes, but lower intensity with a reduced distribution of Ang-(1-7) immunoreactivity. Treatment of the diabetic animals with the angiotensin-converting enzyme inhibitor (ACEI) captopril showed a reduced intensity of Ang II staining, whereas increased intensity and distribution were evident with Ang-(1-7) staining. CONCLUSIONS: These studies reveal that pharmacological inhibition with ACEIs may provide a specific intervention for the management of the diabetes-induced decline in retinal function, reversing the profile of the endogenous angiotensin peptides closer to the normal condition.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Captopril/uso terapéutico , Hiperglucemia/metabolismo , Hiperglucemia/patología , Fragmentos de Péptidos/metabolismo , Retina/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal , Captopril/farmacología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Femenino , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/patología
20.
FASEB J ; 32(9): 5051-5062, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29641288

RESUMEN

Angiogenic factor with G-patch and FHA domains 1 (AGGF1) is involved in vascular development, angiogenesis, specification of hemangioblasts, and differentiation of veins. When mutated, however, it causes Klippel-Trenaunay syndrome, a vascular disorder. In this study, we show that angiotensin II (AngII)-the major effector of the renin-angiotensin system and one of the most important regulators of the cardiovascular system-induces the expression of AGGF1 through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis. AngII significantly up-regulated the levels of AGGF1 mRNA and protein in HUVECs at concentrations of 10-40 µg/ml but not >60 µg/ml. AngII type 1 receptor (AT1R) inhibitor losartan inhibited AngII-induced up-regulation of AGGF1, whereas AT2R inhibitor PD123319 further increased AngII-induced up-regulation of AGGF1. Up-regulation of AGGF1 by AngII was blocked by NF-κB inhibitors, and p65 binds directly to a binding site at the promoter/regulatory region of AGGF1 and transcriptionally activates AGGF1 expression. AngII-induced endothelial tube formation was blocked by small interfering RNAs (siRNAs) for RELA (RELA proto-oncogene, NF-κB subunit)/p65 or AGGF1, and the effect of RELA siRNA was rescued by AGGF1. AngII-induced angiogenesis from aortic rings was severely impaired in Aggf1+/- mice, and the effect was restored by AGGF1. These data suggest that AngII acts as a critical regulator of AGGF1 expression through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis.-Si, W., Xie, W., Deng, W., Xiao, Y., Karnik, S. S., Xu, C., Chen, Q., Wang, Q. K. Angiotensin II increases angiogenesis by NF-κB-mediated transcriptional activation of angiogenic factor AGGF1.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proteínas Angiogénicas/metabolismo , Angiotensina II/farmacología , FN-kappa B/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/farmacología , Losartán/farmacología , FN-kappa B/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Proto-Oncogenes Mas , Piridinas/farmacología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Factor de Transcripción ReIA/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA