Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Hypertension ; 80(2): 385-402, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36440576

RESUMEN

BACKGROUND: Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of ß-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS: We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS: AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS: TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel ß-arrestin-biased AT1R ligands may yield promising drugs to combat AA.


Asunto(s)
Aneurisma de la Aorta , Animales , Femenino , Masculino , Ratones , Angiotensina II/farmacología , Aorta/metabolismo , beta-Arrestinas , Ratones Noqueados , Receptor de Angiotensina Tipo 1/metabolismo
2.
Br J Pharmacol ; 179(18): 4461-4472, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35318654

RESUMEN

Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII.


Asunto(s)
Angiotensina II , Receptor de Angiotensina Tipo 1 , Angiotensina II/farmacología , Ligandos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380734

RESUMEN

While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.


Asunto(s)
Autoanticuerpos , Diseño de Fármacos , Receptor de Angiotensina Tipo 1/agonistas , Angiotensina II , Animales , Especificidad de Anticuerpos , Calcio/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Ligandos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Conejos , Receptores Opioides , Vasoconstricción/efectos de los fármacos
4.
J Biol Chem ; 297(3): 101023, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343564

RESUMEN

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Asunto(s)
Genómica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Transcriptoma , Animales , Citometría de Flujo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
5.
J Membr Biol ; 254(3): 293-300, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33471142

RESUMEN

GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Regulación Alostérica , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
6.
Hypertension ; 77(2): 420-431, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249862

RESUMEN

Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through ß-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective ß-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R ß-arrestin pathways may be exploitable therapeutically.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Desoxicorticosterona/farmacología , Hipertensión/inducido químicamente , Neuronas/efectos de los fármacos , Receptor de Angiotensina Tipo 1/agonistas , beta-Arrestinas/agonistas , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Línea Celular , Hipertensión/metabolismo , Losartán/farmacología , Ratones , Neuronas/metabolismo , Oligopéptidos/farmacología , Sistema Renina-Angiotensina/efectos de los fármacos
8.
Curr Drug Targets ; 21(2): 125-131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31433752

RESUMEN

Homeostasis in the cardiovascular system is maintained by physiological functions of the Renin Angiotensin Aldosterone System (RAAS). In pathophysiological conditions, over activation of RAAS leads to an increase in the concentration of Angiotensin II (AngII) and over activation of Angiotensin Type 1 Receptor (AT1R), resulting in vasoconstriction, sodium retention and change in myocyte growth. It causes cardiac remodeling in the heart which results in left ventricular hypertrophy, dilation and dysfunction, eventually leading to Heart Failure (HF). Inhibition of RAAS using angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has shown to significantly reduce morbidity and mortality due to HF. ACEi have been shown to have higher drug withdrawal rates due to discomfort when compared to ARBs; therefore, ARBs are the preferred choice of physicians for the treatment of HF in combination with other anti-hypertensive agents. Currently, eight ARBs have been approved by FDA and are clinically used. Even though they bind to the same site of AT1R displacing AngII binding but clinical outcomes are significantly different. In this review, we described the clinical significance of each ARB in the treatment of HF and their clinical outcome.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Resultado del Tratamiento
9.
J Chem Inf Model ; 59(1): 373-385, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30608150

RESUMEN

We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.


Asunto(s)
Angiotensina II/farmacología , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/metabolismo , Entropía , Humanos , Modelos Moleculares , Conformación Proteica
10.
Methods Cell Biol ; 149: 215-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30616822

RESUMEN

Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.


Asunto(s)
Presión Sanguínea/fisiología , Vasos Sanguíneos/fisiología , Homeostasis , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Ligandos , Ratones , Receptor de Angiotensina Tipo 1/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3672-3684, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30251687

RESUMEN

BACKGROUND: The cardiac sodium channel Nav1.5 is essential for the physiological function of the heart and causes cardiac arrhythmias and sudden death when mutated. Many disease-causing mutations in Nav1.5 cause defects in protein trafficking, a cellular process critical to the targeting of Nav1.5 to cell surface. However, the molecular mechanisms underlying the trafficking of Nav1.5, in particular, the exit from the endoplasmic reticulum (ER) for cell surface trafficking, remain poorly understood. METHODS AND RESULTS: Here we investigated the role of the SAR1 GTPases in trafficking of Nav1.5. Overexpression of dominant-negative mutant SAR1A (T39N or H79G) or SAR1B (T39N or H79G) significantly reduces the expression level of Nav1.5 on cell surface, and decreases the peak sodium current density (INa) in HEK/Nav1.5 cells and neonatal rat cardiomyocytes. Simultaneous knockdown of SAR1A and SAR1B expression by siRNAs significantly reduces the INa density, whereas single knockdown of either SAR1A or SAR1B has minimal effect. Computer modeling showed that the three-dimensional structure of SAR1 is similar to RAN. RAN was reported to interact with MOG1, a small protein involved in regulation of the ER exit of Nav1.5. Co-immunoprecipitation showed that SAR1A or SAR1B interacted with MOG1. Interestingly, knockdown of SAR1A and SAR1B expression abolished the MOG1-mediated increases in both cell surface trafficking of Nav1.5 and the density of INa. CONCLUSIONS: These data suggest that SAR1A and SAR1B are the critical regulators of trafficking of Nav1.5. Moreover, SAR1A and SAR1B interact with MOG1, and are required for MOG1-mediated cell surface expression and function of Nav1.5.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Proteína de Unión al GTP ran/metabolismo , Animales , Animales Recién Nacidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Mutagénesis , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/economía , Técnicas de Placa-Clamp , Cultivo Primario de Células , Transporte de Proteínas/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP ran/química
12.
J Renin Angiotensin Aldosterone Syst ; 19(3): 1470320318789323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30126320

RESUMEN

HYPOTHESIS: Hyperglycemia decreases angiotensin-(1-7), the endogenous counter-regulator of angiotensin II in the retina. MATERIALS AND METHODS: The distribution and levels of retinal angiotensin II (Ang II) and angiotensin-(1-7) (Ang-(1-7)) were evaluated by confocal imaging and quantitative immunohistochemistry during the development of streptozotocin-induced diabetes in rats. RESULTS: In the nondiabetic eye, Ang II was localized to the endfeet of Müller cells, extending into the cellular processes of the inner plexiform layer and inner nuclear layer; Ang-(1-7) showed a wider distribution, extending from the foot plates of the Müller cells to the photoreceptor layer. Eyes from diabetic animals showed a higher intensity and extent of Ang II staining compared with nondiabetic eyes, but lower intensity with a reduced distribution of Ang-(1-7) immunoreactivity. Treatment of the diabetic animals with the angiotensin-converting enzyme inhibitor (ACEI) captopril showed a reduced intensity of Ang II staining, whereas increased intensity and distribution were evident with Ang-(1-7) staining. CONCLUSIONS: These studies reveal that pharmacological inhibition with ACEIs may provide a specific intervention for the management of the diabetes-induced decline in retinal function, reversing the profile of the endogenous angiotensin peptides closer to the normal condition.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Captopril/uso terapéutico , Hiperglucemia/metabolismo , Hiperglucemia/patología , Fragmentos de Péptidos/metabolismo , Retina/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal , Captopril/farmacología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Femenino , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/patología
13.
FASEB J ; 32(9): 5051-5062, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29641288

RESUMEN

Angiogenic factor with G-patch and FHA domains 1 (AGGF1) is involved in vascular development, angiogenesis, specification of hemangioblasts, and differentiation of veins. When mutated, however, it causes Klippel-Trenaunay syndrome, a vascular disorder. In this study, we show that angiotensin II (AngII)-the major effector of the renin-angiotensin system and one of the most important regulators of the cardiovascular system-induces the expression of AGGF1 through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis. AngII significantly up-regulated the levels of AGGF1 mRNA and protein in HUVECs at concentrations of 10-40 µg/ml but not >60 µg/ml. AngII type 1 receptor (AT1R) inhibitor losartan inhibited AngII-induced up-regulation of AGGF1, whereas AT2R inhibitor PD123319 further increased AngII-induced up-regulation of AGGF1. Up-regulation of AGGF1 by AngII was blocked by NF-κB inhibitors, and p65 binds directly to a binding site at the promoter/regulatory region of AGGF1 and transcriptionally activates AGGF1 expression. AngII-induced endothelial tube formation was blocked by small interfering RNAs (siRNAs) for RELA (RELA proto-oncogene, NF-κB subunit)/p65 or AGGF1, and the effect of RELA siRNA was rescued by AGGF1. AngII-induced angiogenesis from aortic rings was severely impaired in Aggf1+/- mice, and the effect was restored by AGGF1. These data suggest that AngII acts as a critical regulator of AGGF1 expression through NF-κB, and that AGGF1 plays a key role in AngII-induced angiogenesis.-Si, W., Xie, W., Deng, W., Xiao, Y., Karnik, S. S., Xu, C., Chen, Q., Wang, Q. K. Angiotensin II increases angiogenesis by NF-κB-mediated transcriptional activation of angiogenic factor AGGF1.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proteínas Angiogénicas/metabolismo , Angiotensina II/farmacología , FN-kappa B/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/farmacología , Losartán/farmacología , FN-kappa B/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Proto-Oncogenes Mas , Piridinas/farmacología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Factor de Transcripción ReIA/efectos de los fármacos
14.
Br J Pharmacol ; 175(12): 2454-2469, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29570771

RESUMEN

BACKGROUND AND PURPOSE: Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT1 receptors is necessary. EXPERIMENTAL APPROACH: To identify the robust inverse agonist for active state of AT1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT1 receptors and active-state N111G mutant AT1 receptors. KEY RESULTS: Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT1 receptors compared with the ground-state WT-AT1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT1 receptors. In contrast, interactions between eprosartan and N111G-AT1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. CONCLUSIONS AND IMPLICATIONS: Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT1 receptor activation are warranted.


Asunto(s)
Acrilatos/farmacología , Imidazoles/farmacología , Receptor de Angiotensina Tipo 1/agonistas , Tiofenos/farmacología , Acrilatos/química , Animales , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/química , Ligandos , Modelos Moleculares , Estructura Molecular , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Relación Estructura-Actividad , Tiofenos/química
15.
J Chem Inf Model ; 58(1): 182-193, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29195045

RESUMEN

Crystal structures of the human angiotensin II type 1 receptor (AT1R) complex with the antihypertensive agent ZD7155 (PDB id: 4YAY ) and the blood pressure medication Benicar (PDB id: 4ZUD ) showed that binding poses of both antagonists are similar. This finding implies that clinically used angiotensin receptor blocking (ARB) drugs may interact in a similar fashion. However, clinically observed differences in pharmacological and therapeutic efficacies of ARBs lead to the question of whether the dynamic interactions of AT1R with ARBs vary. To address this, we performed induced-fit docking (IFD) of eight clinically used ARBs to AT1R followed by 200 ns molecular dynamic (MD) simulation. The experimental Ki values for ARBs correlated remarkably well with calculated free energy with R2 = 0.95 and 0.70 for AT1R-ARB models generated respectively by IFD and MD simulation. The eight ARB-AT1R complexes share a common set of binding residues. In addition, MD simulation results validated by mutagenesis data discovered distinctive spatiotemporal interactions that display unique bonding between an individual ARB and AT1R. These findings provide a reasonably broader picture reconciling the structure-based observations with clinical studies reporting efficacy variations for ARBs. The unique differences unraveled for ARBs in this study will be useful for structure-based design of the next generation of more potent and selective ARBs.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Diseño de Fármacos , Receptor de Angiotensina Tipo 1/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/genética , Análisis Espacio-Temporal
16.
PLoS One ; 12(12): e0190217, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29287092

RESUMEN

Perspectives on whether the functions of MAS, a G protein-coupled receptor, are beneficial or deleterious in the heart remain controversial. MAS gene knockout reduces coronary vasodilatation leading to ischemic injury. G protein signaling activated by MAS has been implicated in progression of adaptive cardiac hypertrophy to heart failure and fibrosis. In the present study, we observed increased expression of MAS, connective tissue growth factor (CTGF) and collagen genes in failing (HF) human heart samples when compared to non-failing (NF). Expression levels of MAS are correlated with CTGF in HF and NF leading to our hypothesis that MAS controls CTGF production and the ensuing expression of collagen genes. In support of this hypothesis we show that the non-peptide MAS agonist AR234960 increases both mRNA and protein levels of CTGF via ERK1/2 signaling in HEK293-MAS cells and adult human cardiac fibroblasts. MAS-mediated CTGF expression can be specifically blocked by MAS inverse agonist AR244555 and also by MEK1 inhibition. Expression of CTGF gene was essential for MAS-mediated up-regulation of different collagen subtype genes in HEK293-MAS cells and human cardiac fibroblasts. Knockdown of CTGF by RNAi disrupted collagen gene regulation by the MAS-agonist. Our data indicate that CTGF mediates the profibrotic effects of MAS in cardiac fibroblasts. Blocking MAS-CTGF-collagen pathway should be considered for pharmacological intervention for HF.


Asunto(s)
Colágeno/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Expresión Génica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sulfonas/uso terapéutico , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfonas/farmacología
17.
Pharmacol Res ; 123: 40-50, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28648738

RESUMEN

Although the octapeptide hormone angiotensin II (Ang II) regulates cardiovascular and renal homeostasis through the Ang II type 1 receptor (AT1R), overstimulation of AT1R causes various human diseases, such as hypertension and cardiac hypertrophy. Therefore, AT1R blockers (ARBs) have been widely used as therapeutic drugs for these diseases. Recent basic research and clinical studies have resulted in the discovery of interesting phenomena associated with AT1R function. For example, ligand-independent activation of AT1R by mechanical stress and agonistic autoantibodies, as well as via receptor mutations, has been shown to decrease the inverse agonistic efficacy of ARBs, though the molecular mechanisms of such phenomena had remained elusive until recently. Furthermore, although AT1R is believed to exist as a monomer, recent studies have demonstrated that AT1R can homodimerize and heterodimerize with other G-protein coupled receptors (GPCR), altering the receptor signaling properties. Therefore, formation of both AT1R homodimers and AT1R-GPCR heterodimer may be involved in the pathogenesis of human disease states, such as atherosclerosis and preeclampsia. Finally, biased AT1R ligands that can preferentially activate the ß-arrestin-mediated signaling pathway have been discovered. Such ß-arrestin-biased AT1R ligands may be better therapeutic drugs for cardiovascular diseases. New findings on AT1R described herein could provide a conceptual framework for application of ARBs in the treatment of diseases, as well as for novel drug development. Since AT1R is an extensively studied member of the GPCR superfamily encoded in the human genome, this review is relevant for understanding the functions of other members of this superfamily.


Asunto(s)
Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Agonismo Inverso de Drogas , Humanos , Conformación Proteica , Multimerización de Proteína , Receptor de Angiotensina Tipo 1/química
18.
Br J Pharmacol ; 174(9): 737-753, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28194766

RESUMEN

Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.


Asunto(s)
Angiotensina I/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Humanos , Unión Proteica/fisiología , Proto-Oncogenes Mas , Transducción de Señal/fisiología
19.
J Cell Signal ; 1(2)2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27512731

RESUMEN

Angiotensinogen - a serpin family protein predominantly produced by the liver is systematically processed by proteases of the Renin Angiotensin system (RAS) generating hormone peptides. Specific cell surface receptors for at least three distinct angiotensin peptides produce distinct cellular signals that regulate system-wide physiological response to RAS. Two well characterized receptors are angiotensin type 1 receptor (AT1 receptor) and type 2 receptor (AT2 receptor). They respond to the octapeptide hormone angiotensin II. The oncogene product MAS is a putative receptor for Ang (1-7). While these are G-protein coupled receptors (GPCRs), the in vivo angiotensin IV binding sites may be type 2 transmembrane proteins. These four receptors together regulate cardiovascular, hemodynamic, neurological, renal, and endothelial functions; as well as cell proliferation, survival, matrix-cell interactions and inflammation. Angiotensin receptors are important therapeutic targets for several diseases. Thus, researchers and pharmaceutical companies are focusing on drugs targeting AT1 receptor than AT2 receptor, MAS and AngIV binding sites. AT1 receptor blockers are the cornerstone of current treatment for hypertension, heart failure, renal failure and many types of vascular diseases including atherosclerosis, aortic aneurism and Marfan syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...