Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 131(4): 1564-1577, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33825272

RESUMEN

AIMS: Recent foodborne disease outbreaks have caused farmers to re-evaluate their practices. In particular, concern that soil amendments could introduce foodborne pathogens onto farms and promote their survival in soils has led farmers to reduce or eliminate the application of animal-based composts. However, organic amendments (such as composts and cover crops) could bolster food safety by increasing soil microbial diversity and activity, which can act as competitors or antagonists and reduce pathogen survival. METHODS AND RESULTS: Leveraging a study of a 27-year experiment comparing organic and conventional soil management, we evaluate the impacts of composted poultry litter and cover crops on soil chemistry, bacterial communities and survival of Salmonella enterica and Listeria monocytogenes. We found that bacterial community composition strongly affected pathogen survival in soils. Specifically, organic soils managed with cover crops and composts hosted more macronutrients and bacterial communities that were better able to suppress Salmonella and Listeria. For example, after incubating soils for 10 days at 20°C, soils without composts retained fourfold to fivefold more Salmonella compared to compost-amended soils. However, treatment effects dissipated as bacterial communities converged over the growing season. CONCLUSIONS: Our results suggest that composts and cover crops may be used to build healthy soils without increasing foodborne pathogen survival. SIGNIFICANCE AND IMPACT OF THE STUDY: Our work suggests that animal-based composts do not promote pathogen survival and may even promote bacterial communities that suppress pathogens. Critically, proper composting techniques are known to reduce pathogen populations in biological soil amendments of animal origin, which can reduce the risks of introducing pathogens to farm fields in soil amendments. Thus, animal-based composts and cover crops may be a safe alternative to conventional fertilizers, both because of the known benefits of composts for soil health and because it may be possible to apply amendments in such a way that food-safety risks are mitigated rather than exacerbated.


Asunto(s)
Compostaje , Salmonella enterica , Animales , Fertilizantes , Estiércol , Suelo , Microbiología del Suelo
2.
Ecol Appl ; 30(5): e02115, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32145709

RESUMEN

Some birds are viewed as pests and vectors of foodborne pathogens in farmlands, yet birds also benefit growers by consuming pests. While many growers seek to prevent birds from accessing their farms, few studies have attempted to quantify the net effects of bird services and disservices, let alone how net effects shift across farm management strategies. We quantified the net effect of birds on crop production across 20 California strawberry (Fragaria × ananassa) farms that varied in local management practices and landscape context. We surveyed farms for berry damage and bird droppings (as potential sources of pathogens) and implemented a large-scale exclusion experiment to quantify the impact of birds on production. We found that birds had only a slightly negative overall impact on strawberry production, reducing economic value by 3.6%. Direct bird damage and intraguild predation contributed equally to this net effect, underscoring the importance of indirect trophic interactions that may be less apparent to growers. In simple landscapes (e.g., low proportions of surrounding seminatural habitat), birds provided pest control in the interiors of farm fields, and costs from bird damage to crops peaked at field edges. In complex landscapes (e.g., high proportions of seminatural habitat), birds were more likely to disrupt pest control by feeding as intraguild predators. Nonetheless, seminatural habitat dampened bird services and disservices, and our models predicted that removing habitat around farm fields would increase costs from bird damage to crops by up to 76%. Fecal contamination of crops was extremely rare (0.01%). However, both fecal contamination and bird damage did increase on farms with higher densities of fencing and wires, where birds often perch. Our results demonstrate that maintaining seminatural habitat around farms may enhance bird diversity and mitigate bird damage without increasing food safety risks. We also show that the net effects of birds depend on farming context and vary in complex ways in relation to locations within a farm, local farm attributes, and the surrounding landscape. This context-specific variation must be considered in order to optimize the management of wild birds in agroecosystems.


Asunto(s)
Agricultura , Aves , Animales , Productos Agrícolas , Ecosistema , Granjas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...