Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13365, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862686

RESUMEN

In additive manufacturing (AM), process defects such as keyhole pores are difficult to anticipate, affecting the quality and integrity of the AM-produced materials. Hence, considerable efforts have aimed to predict these process defects by training machine learning (ML) models using passive measurements such as acoustic emissions. This work considered a dataset in which keyhole pores of a laser powder bed fusion (LPBF) experiment were identified using X-ray radiography and then registered both in space and time to acoustic measurements recorded during the LPBF experiment. Due to AM's intrinsic process controls, where a pore-forming event is relatively rare, the acoustic datasets collected during monitoring include more non-pores than pores. In other words, the dataset for ML model development is imbalanced. Moreover, this imbalanced and sparse data phenomenon remains ubiquitous across many AM monitoring schemes since training data is nontrivial to collect. Hence, we propose a machine learning approach to improve this dataset imbalance and enhance the prediction accuracy of pore-labeled data. Specifically, we investigate how data augmentation helps predict pores and non-pores better. This imbalance is improved using recent advances in data augmentation called Mixup, a weak-supervised learning method. Convolutional neural networks (CNNs) are trained on original and augmented datasets, and an appreciable increase in performance is reported when testing on five different experimental trials. When ML models are trained on original and augmented datasets, they achieve an accuracy of 95% and 99% on test datasets, respectively. We also provide information on how dataset size affects model performance. Lastly, we investigate the optimal Mixup parameters for augmentation in the context of CNN performance.

2.
Sci Rep ; 13(1): 16262, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758757

RESUMEN

Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions. With these two disparate applications in mind, we develop a novel capability which uses an active learning approach to optimize the use of local fine-scale simulations for informing coarse-scale hydrodynamics. Our approach addresses three challenges: forecasting continuum coarse-scale trajectory to speculatively execute new fine-scale molecular dynamics calculations, dynamically updating coarse-scale from fine-scale calculations, and quantifying uncertainty in neural network models.

3.
Sci Rep ; 11(1): 21730, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741046

RESUMEN

We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-frame for which the wells have been producing), and the significant computational expense of high-fidelity modeling. We do this by applying the machine-learning paradigm of transfer learning, where we combine fast, but less accurate reduced-order models with slow, but accurate high-fidelity models. We use the Patzek model (Proc Natl Acad Sci 11:19731-19736, https://doi.org/10.1073/pnas.1313380110 , 2013) as the reduced-order model to generate synthetic production data and supplement this data with synthetic production data obtained from high-fidelity discrete fracture network simulations of the site of interest. Our results demonstrate that training with low-fidelity models is not sufficient for accurate forecasting, but transfer learning is able to augment the knowledge and perform well once trained with the small set of results from the high-fidelity model. Such a physics-informed machine-learning (PIML) workflow, grounded in physics, is a viable candidate for real-time history matching and production forecasting in a fractured shale gas reservoir.

4.
Phys Rev E ; 102(5-1): 052310, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327157

RESUMEN

We describe a method to simulate transient fluid flows in fractured media using an approach based on graph theory. Our approach builds on past work where the graph-based approach was successfully used to simulate steady-state fluid flows in fractured media. We find a mean computational speedup of the order of 1400 from an ensemble of a 100 discrete fracture networks in contrast to the O(10^{4}) speedup that was obtained for steady-state flows earlier. However, the transient flows considered here involve an additional degree of complexity that was not present in the steady-state flows considered previously with a graph-based approach, that of time marching and solution of the flow equations within a time-stepping scheme. We verify our method with an analytical test case and demonstrate its use on a practical problem related to fluid flows in hydraulically fractured reservoirs. By enabling the study of transient flows, we create an opportunity for a wide set of possibilities where a steady-state approximation is not sufficient, such as the example motivated by hydraulic fracturing that we present here. This work validates the concept that graphs are able to reliably capture the topological properties of the fracture network and serve as effective surrogates in an uncertainty-quantification framework.

5.
Sci Rep ; 10(1): 13312, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770012

RESUMEN

Fine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. At these scales, fluids are under confinement, affecting key properties such as density, viscosity, adsorption, etc. Pore-scale Lattice Boltzmann Methods (LBM) can simulate flow in complex pore structures relevant to predicting hydrocarbon production, but must be corrected to account for confinement effects. Molecular dynamics (MD) can model confinement effects but is computationally expensive in comparison. The hurdle to bridging MD with LBM is the computational expense of MD simulations needed to perform this correction. Here, we build a Machine Learning (ML) surrogate model that captures adsorption effects across a wide range of parameter space and bridges the MD and LBM scales using a relatively small number of MD calculations. The model computes upscaled adsorption parameters across varying density, temperature, and pore width. The ML model is 7 orders of magnitude faster than brute force MD. This workflow is agnostic to the physical system and could be generalized to further scale-bridging applications.

6.
Proc Natl Acad Sci U S A ; 116(5): 1532-1537, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635428

RESUMEN

While hydraulic fracturing technology, aka fracking (or fraccing, frac), has become highly developed and astonishingly successful, a consistent formulation of the associated fracture mechanics that would not conflict with some observations is still unavailable. It is attempted here. Classical fracture mechanics, as well as current commercial software, predict vertical cracks to propagate without branching from the perforations of the horizontal well casing, which are typically spaced at 10 m or more. However, to explain the gas production rate at the wellhead, the crack spacing would have to be only about 0.1 m, which would increase the overall gas permeability of shale mass about 10,000×. This permeability increase has generally been attributed to a preexisting system of orthogonal natural cracks, whose spacing is about 0.1 m. However, their average age is about 100 million years, and a recent analysis indicated that these cracks must have been completely closed by secondary creep of shale in less than a million years. Here it is considered that the tectonic events that produced the natural cracks in shale must have also created weak layers with nanocracking or microcracking damage. It is numerically demonstrated that seepage forces and a greatly enhanced permeability along the weak layers, with a greatly increased transverse Biot coefficient, must cause the fracking to engender lateral branching and the opening of hydraulic cracks along the weak layers, even if these cracks are initially almost closed. A finite element crack band model, based on a recently developed anisotropic spherocylindrical microplane constitutive law, demonstrates these findings [Rahimi-Aghdam S, et al. (2018) arXiv:1212.11023].

7.
Sci Rep ; 8(1): 11665, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076388

RESUMEN

Fractured systems are ubiquitous in natural and engineered applications as diverse as hydraulic fracturing, underground nuclear test detection, corrosive damage in materials and brittle failure of metals and ceramics. Microstructural information (fracture size, orientation, etc.) plays a key role in governing the dominant physics for these systems but can only be known statistically. Current models either ignore or idealize microscale information at these larger scales because we lack a framework that efficiently utilizes it in its entirety to predict macroscale behavior in brittle materials. We propose a method that integrates computational physics, machine learning and graph theory to make a paradigm shift from computationally intensive high-fidelity models to coarse-scale graphs without loss of critical structural information. We exploit the underlying discrete structure of fracture networks in systems considering flow through fractures and fracture propagation. We demonstrate that compact graph representations require significantly fewer degrees of freedom (dof) to capture micro-fracture information and further accelerate these models with Machine Learning. Our method has been shown to improve accuracy of predictions with up to four orders of magnitude speedup.

8.
IEEE Trans Vis Comput Graph ; 23(8): 1896-1909, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27333605

RESUMEN

We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for increasingly complex examples of DFNs, covering two distinct use cases - hydrocarbon extraction from unconventional resources and transport of dissolved contaminant from a spent nuclear fuel repository.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA