Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 15(11): 4566-4567, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253632
2.
Aging Cell ; 21(7): e13605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670027

RESUMEN

hMTH1 protects against mutation during oxidative stress. It degrades 8-oxodGTP to exclude potentially mutagenic oxidized guanine from DNA. hMTH1 expression is linked to ageing. Its downregulation in cultured cells accelerates RAS-induced senescence, and its overexpression in hMTH1-Tg mice extends lifespan. In this study, we analysed the effects of a brief (5 weeks) high-fat diet challenge (HFD) in young (2 months old) and adult (7 months old) wild-type (WT) and hMTH1-Tg mice. We report that at 2 months, hMTH1 overexpression ameliorated HFD-induced weight gain, changes in liver metabolism related to mitochondrial dysfunction and oxidative stress. It prevented DNA damage as quantified by a comet assay. At 7 months old, these HFD-induced effects were less severe and hMTH1-Tg and WT mice responded similarly. hMTH1 overexpression conferred lifelong protection against micronucleus induction, however. Since the canonical activity of hMTH1 is mutation prevention, we conclude that hMTH1 protects young mice against HFD by reducing genome instability during the early period of rapid growth and maximal gene expression. hMTH1 protection is redundant in the largely non-growing, differentiated tissues of adult mice. In hMTH1-Tg mice, expression of a less heavily mutated genome throughout life provides a plausible explanation for their extended longevity.


Asunto(s)
Grasas de la Dieta , Longevidad , Animales , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Longevidad/genética , Ratones , Ratones Transgénicos , Estrés Oxidativo , Estrés Fisiológico
3.
Sci Rep ; 7(1): 4310, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28655934

RESUMEN

Potentially mutagenic DNA lesions induced by UVB (wavelengths 280-320 nm) are important risk factors for solar ultraviolet (UV) radiation-induced skin cancer. The carcinogenicity of the more abundant UVA (320-400 nm) is less well understood but is generally regarded to reflect its interaction with cellular chromophores that act as photosensitisers. The arylhydrocarbon receptor agonist 6-formylindolo[3,2-b] carbazole (FICZ), is a UVB photoproduct of tryptophan and a powerful UVA chromophore. Combined with UVA, FICZ generates reactive oxygen species (ROS) and induces oxidative DNA damage. Here we demonstrate that ROS generated by FICZ/UVA combinations also cause extensive protein damage in HaCaT human keratinocytes. We show that FICZ/UVA-induced oxidation significantly inhibits the removal of potentially mutagenic UVB-induced DNA photolesions by nucleotide excision repair (NER). DNA repair inhibition is due to FICZ/UVA-induced oxidation damage to the NER proteome and DNA excision repair is impaired in extracts prepared from FICZ/UVA-treated cells. NER protects against skin cancer. As a likely UVB photoproduct of intracellular tryptophan, FICZ represents a de facto endogenous UVA photosensitiser in sun-exposed skin. FICZ formation may increase the risk of solar UV-induced skin cancer by promoting photochemical damage to the NER proteome and thereby preventing the removal of UVB-induced DNA lesions.


Asunto(s)
Carbazoles/farmacología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Triptófano/metabolismo , Rayos Ultravioleta/efectos adversos , Daño del ADN , Humanos , Oxidación-Reducción
4.
Free Radic Biol Med ; 107: 101-109, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27989755

RESUMEN

UVA accounts for about 95% of the solar ultraviolet (UV) radiation that reaches Earth and most likely contributes to human skin cancer risk. In contrast to UVB, which comprises the remaining 5% and is absorbed by DNA nucleobases to cause direct photodamage, UVA damages DNA indirectly. It does this largely through its interactions with cellular chromophores that act as photosensitisers to generate reactive oxygen species. Exogenously supplied chemicals, including some widely-prescribed medicines, may also act as photosensitisers and these drugs are associated with an increased risk of sun-related cancer. Because they amplify the effects of UVA on cells, they provide a means to investigate the mechanisms and effects of UVA-induced photodamage. Here, we describe some of the major lesions induced by two groups of UVA photosensitisers, the DNA thionucleotides and the fluoroquinolone antibiotics. In thionucleotides, replacement of the oxygen atoms of canonical nucleobases by sulfur converts them into strong UVA chromophores that can be incorporated into DNA. The fluoroquinolones are also UVA chromophores. They are not incorporated into DNA and induce a different range of DNA damages. We also draw attention to the potentially important contribution of photochemical protein damage to the cellular effects of photosensitised UVA. Proteins targeted for oxidation damage include DNA repair factors and we suggest that UVA-mediated protein damage may contribute to sunlight-induced cancer risk.


Asunto(s)
Antibacterianos/química , Daño del ADN , ADN/efectos de la radiación , Fluoroquinolonas/química , Estrés Oxidativo , Neoplasias Cutáneas/metabolismo , Tionucleótidos/química , Antibacterianos/uso terapéutico , Reparación del ADN , Fluoroquinolonas/uso terapéutico , Humanos , Oxidación-Reducción , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/patología , Tionucleótidos/uso terapéutico , Rayos Ultravioleta/efectos adversos
5.
J Proteome Res ; 15(12): 4612-4623, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27654267

RESUMEN

Long wavelength ultraviolet radiation (UVA, 320-400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA-protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions.


Asunto(s)
Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , ADN/metabolismo , Fármacos Fotosensibilizantes/farmacología , Proteómica/métodos , Rayos Ultravioleta , Células Cultivadas , Ciprofloxacina/farmacología , Expresión Génica , Humanos , Oxidación-Reducción , Proteínas/metabolismo , Tioguanina/farmacología
6.
DNA Repair (Amst) ; 44: 178-185, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27324272

RESUMEN

Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency - with particular reference to NER and skin cancer risk.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Reparación del ADN/efectos de la radiación , Melanoma/metabolismo , Neoplasias Inducidas por Radiación/química , Neoplasias Cutáneas/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Melanoma/etiología , Melanoma/patología , Mutación , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/metabolismo , Neoplasias Inducidas por Radiación/patología , Oxidación-Reducción , Estrés Oxidativo , Fármacos Fotosensibilizantes/agonistas , Fármacos Fotosensibilizantes/metabolismo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos
7.
Mol Cancer Res ; 14(7): 612-22, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27106867

RESUMEN

UNLABELLED: The relationship between sun exposure and nonmelanoma skin cancer risk is well established. Solar UV (wavelength 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 nm) component of solar UV radiation increases skin cancer risk is not understood. Here it is demonstrated that the contribution of UVA to the effect of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the susceptibility of the cells to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. IMPLICATIONS: As NER is both a defense against cancer and a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative stress has implications for both cancer risk and for the effectiveness of anticancer therapy. Mol Cancer Res; 14(7); 612-22. ©2016 AACR.


Asunto(s)
Reparación del ADN/efectos de la radiación , Estrés Oxidativo/genética , Línea Celular Tumoral , Daño del ADN , Células HeLa , Humanos , Queratinocitos/metabolismo , Queratinocitos/fisiología , Queratinocitos/efectos de la radiación , Mutagénesis/efectos de la radiación , Mutación , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Rayos Ultravioleta
8.
J Invest Dermatol ; 135(11): 2834-2841, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26134950

RESUMEN

Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Trastornos por Fotosensibilidad/fisiopatología , Proteína de Replicación A/efectos de la radiación , Neoplasias Cutáneas/fisiopatología , Rayos Ultravioleta/efectos adversos , Células Cultivadas , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo , Trastornos por Fotosensibilidad/etiología , Fármacos Fotosensibilizantes/efectos adversos , Fármacos Fotosensibilizantes/farmacología , Proteína de Replicación A/efectos de los fármacos , Proteína de Replicación A/metabolismo , Neoplasias Cutáneas/etiología , Tioguanina/metabolismo
9.
J Photochem Photobiol B ; 145: 1-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25747491

RESUMEN

Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C-I and C-Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion.


Asunto(s)
ADN/química , Tiouridina/análogos & derivados , Rayos Ultravioleta , Animales , Línea Celular , ADN/metabolismo , Daño del ADN/efectos de la radiación , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Halogenación , Células HeLa , Humanos , Ratones , Oxidación-Reducción , Dímeros de Pirimidina/química , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Tiouridina/síntesis química , Tiouridina/química
10.
Oncotarget ; 6(10): 7481-92, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25638157

RESUMEN

The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG).Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh-/- mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh-/- mice whereas similarly treated wild-type animals remained tumor-free.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Tioguanina/efectos adversos , Animales , Humanos , Ratones , Tioguanina/metabolismo , Transfección , Rayos Ultravioleta/efectos adversos
11.
Nucleic Acids Res ; 42(22): 13714-22, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25414333

RESUMEN

Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib-a BRAF inhibitor used to treat metastatic melanoma-are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage.


Asunto(s)
Antibacterianos/toxicidad , Antineoplásicos/toxicidad , Reparación del ADN/efectos de los fármacos , Fluoroquinolonas/toxicidad , Indoles/toxicidad , Fármacos Fotosensibilizantes/toxicidad , Carbonilación Proteica/efectos de los fármacos , Sulfonamidas/toxicidad , Rayos Ultravioleta/efectos adversos , Línea Celular , Ciprofloxacina/toxicidad , Reparación del ADN/efectos de la radiación , Células HeLa , Humanos , Ofloxacino/toxicidad , Antígeno Nuclear de Célula en Proliferación/análisis , Carbonilación Proteica/efectos de la radiación , Tioguanina/toxicidad , Vemurafenib
13.
J Invest Dermatol ; 134(5): 1408-1417, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24284422

RESUMEN

Damage to skin DNA by solar UV is largely unavoidable, and an optimal cellular response to it requires the coordinated operation of proteins in numerous pathways. A fully functional DNA repair proteome for removing harmful DNA lesions is a prerequisite for an appropriate DNA damage response. Genetically determined failure to repair UV-induced DNA damage is associated with skin photosensitivity and increased skin cancer risk. Patients treated with immunosuppressant/anti-inflammatory thiopurines are also photosensitive and have high rates of sun-related skin cancer. Their DNA contains the base analog 6-thioguanine (6-TG), which acts as a UVA photosensitizer to generate reactive oxygen species (ROS), predominantly singlet oxygen ((1)O2). ROS damage both DNA and proteins. Here we show that UVA irradiation of cultured human cells containing DNA 6-TG causes significant protein oxidation and damages components of the DNA repair proteome, including the Ku, OGG-1, MYH, and RPA proteins. Assays of DNA repair in intact cells or in cell extracts indicate that this protein damage compromises DNA break rejoining and base and nucleotide excision repair. As these experimental conditions simulate those in the skin of patients taking thiopurines, our findings suggest a mechanism whereby UVA in sunlight may contribute to skin carcinogenesis in immunosuppressed patients.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Trastornos por Fotosensibilidad/metabolismo , Tioguanina/farmacología , Rayos Ultravioleta/efectos adversos , Animales , Antiinflamatorios/efectos adversos , Antimetabolitos Antineoplásicos/farmacología , Cricetinae , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Glicosilasas/metabolismo , ADN Helicasas/metabolismo , Fibroblastos/citología , Células HeLa , Humanos , Inmunosupresores/efectos adversos , Autoantígeno Ku , Leucemia , Oxidación-Reducción , Trastornos por Fotosensibilidad/patología , Proteoma/metabolismo , Factores de Riesgo , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología
14.
Biochimie ; 95(2): 320-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23063694

RESUMEN

In vitro assay of mammalian DNA replication has been variously approached. Using gapped circular duplex substrates containing a 500-base single-stranded DNA region, we have constructed a mammalian cell-free system in which physiological DNA replication may be reproduced. Reaction of the gapped plasmid substrate with crude extracts of human HeLaS3 cells induces efficient DNA synthesis in vitro. The induced synthesis was strongly inhibited by aphidicolin and completely depended on dNTP added to the system. In cell extracts in which PCNA was depleted step-wise by immunoprecipitation, DNA synthesis was accordingly reduced. These data suggest that replicative DNA polymerases, particularly pol delta, may chiefly function in this system. Furthermore, DNA synthesis is made quantifiable in this system, which enables us to evaluate the efficiency of DNA replication induced. Our system sensitively and quantitatively detected the reduction of the DNA replication efficiency in the DNA substrates damaged by oxidation or UV cross-linking and in the presence of a potent chain terminator, ara-CTP. The quantitative assessment of mammalian DNA replication may provide various advantages not only in basic research but also in drug development.


Asunto(s)
Bioensayo , Sistema Libre de Células/metabolismo , Replicación del ADN/genética , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Afidicolina/farmacología , Trifosfato de Arabinofuranosil Citosina/farmacología , Sistema Libre de Células/efectos de los fármacos , Células HeLa , Humanos , Cinética , Inhibidores de la Síntesis del Ácido Nucleico , Plásmidos/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo
15.
Cancer Res ; 72(18): 4787-95, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22822082

RESUMEN

The thiopurines azathioprine and 6-mercaptopurine have been extensively prescribed as immunosuppressant and anticancer agents for several decades. A third member of the thiopurine family, 6-thioguanine (6-TG), has been used less widely. Although known to be partly dependent on DNA mismatch repair (MMR), the cytotoxicity of 6-TG remains incompletely understood. Here, we describe a novel MMR-independent pathway of 6-TG toxicity. Cell killing depended on two properties of 6-TG: its incorporation into DNA and its ability to act as a source of reactive oxygen species (ROS). ROS targeted DNA 6-TG to generate potentially lethal replication-arresting DNA lesions including interstrand cross-links. These triggered processing by the Fanconi anemia and homologous recombination DNA repair pathways. Allopurinol protected against 6-TG toxicity by acting as a ROS scavenger and preventing DNA damage. Together, our findings provide mechanistic evidence to support the proposed use of thiopurines to treat HR-defective tumors and for the coadministration of 6-TG and allopurinol as an immunomodulation strategy in inflammatory disorders.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , ADN/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Tioguanina/farmacología , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Anemia de Fanconi/metabolismo , Humanos , Immunoblotting , Especies Reactivas de Oxígeno/metabolismo
16.
Photochem Photobiol Sci ; 11(1): 148-54, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22044942

RESUMEN

Photochemotherapy, in which ultraviolet radiation (UVR: 280-400 nm) or visible light is combined with a photosensitizing drug to produce a therapeutic effect that neither drug or radiation can achieve alone, is a proven therapeutic strategy for a number of non-malignant hyperproliferative skin conditions and various cancers. Examples are psoralen plus UVA (320-400 nm) radiation (PUVA) and photodynamic therapy (PDT). All existing photochemotherapies have drawbacks - for example the association of PUVA with the development of skin cancer, and pain that is often associated with PDT treatment of skin lesions. There is a clear need to develop alternative approaches that involve lower radiation doses and/or improved selectivity for target cells. In this review, we explore the possibility to address this need by exploiting thionucleoside-mediated DNA photosensitisation to low, non toxic doses of UVA radiation.


Asunto(s)
ADN/química , Fotoquimioterapia , Timidina/análogos & derivados , Rayos Ultravioleta , Animales , Muerte Celular/efectos de la radiación , Modelos Animales , Timidina/metabolismo
17.
Photochem Photobiol ; 88(1): 5-13, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22077233

RESUMEN

Thiopurines are prescribed frequently as medication for cancer and for inflammatory disorders. One of them, azathioprine, has been the immunosuppressant of choice for organ transplant recipients for many years. Thiopurine use is associated with elevated sun sensitivity and skin cancer risk. Skin sensitization is selective for UVA. 6-TG integrates into DNA and unlike the canonical DNA bases, it is a strong UVA chromophore with an absorbance maximum at 342 nm. DNA 6-TG is a photosensitizer and a source of reactive oxygen species. Reactive oxygen that is generated from the photochemical activation of DNA 6-TG causes extensive damage to DNA and proteins. This damage is mutagenic and extremely toxic to cultured human cells. Here we describe some of the lesions that are known to be generated from UVA irradiation of DNA 6-TG. We discuss how this photochemical damage might contribute to the toxic effect of thiopurine/UVA treatment on cultured cells and to the high risk of skin cancer in thiopurine-treated patients.


Asunto(s)
Daño del ADN , Tioguanina/química , Rayos Ultravioleta , Fotoquímica , Especies Reactivas de Oxígeno/química
18.
Photochem Photobiol Sci ; 11(1): 62-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21860872

RESUMEN

The thiopurines azathioprine, 6-mercaptopurine and 6-thioguanine (6-TG) are important medications for cancer and inflammatory disorders. They are also widely prescribed as immunosuppressants in organ transplant patients. Their metabolism results in the incorporation of 6-TG into patients' DNA, and this increases skin sensitivity to incident UVA. Unlike the canonical DNA bases, which do not absorb UVA to a significant degree, DNA 6-TG is a strong UVA chromophore. It acts as a Type II UVA photosensitizer, and the combination of 6-TG and UVA treatment induces a synergistic toxicity in cultured human cells. Here, we review some of the damage that this interaction causes. Photochemical activation of DNA 6-TG triggers DNA and protein oxidation; it induces DNA breakage, DNA crosslinking, oxidation of DNA bases and the covalent attachment of proteins to DNA. Many of these photochemical DNA lesions are difficult for cells to deal with, and we review the evidence linking thiopurine immunosuppression with genome instability and the high incidence of skin cancer in organ transplant recipients.


Asunto(s)
Azatioprina/uso terapéutico , Inmunosupresores/uso terapéutico , Mercaptopurina/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias Cutáneas/etiología , Tioguanina/uso terapéutico , Rayos Ultravioleta , Humanos
19.
FEBS Lett ; 585(24): 3941-6, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22062154

RESUMEN

The anticancer and immunosuppressant thiopurines cause 6-thioguanine (6-TG) to accumulate in nuclear DNA. We report that 6-TG is also readily incorporated into mitochondrial DNA (mtDNA) where it is rapidly oxidized. The oxidized forms of mtDNA 6-TG inhibit replication by DNA Pol-γ. Accumulation of oxidized 6-TG is associated with reduced mtDNA transcription, a decline in mitochondrial protein levels, and loss of mitochondrial function. Ultraviolet A radiation (UVA) also oxidizes mtDNA 6-TG. Cells without mtDNA are less sensitive to killing by a combination of 6-TG and UVA than their mtDNA-containing counterparts, indicating that photochemical mtDNA 6-TG oxidation contributes to 6-TG-mediated UVA photosensitization.


Asunto(s)
Daño del ADN , ADN Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tioguanina/efectos adversos , Adenosina Trifosfato/biosíntesis , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HCT116 , Humanos , Cinética , Ratones , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Oxidación-Reducción , Tioguanina/metabolismo , Factores de Tiempo , Rayos Ultravioleta
20.
Nucleic Acids Res ; 39(22): 9620-32, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21890905

RESUMEN

Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S(4)TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S(4)TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S(4)TdR in dilute solution, more complex lesions are formed when S(4)TdR-containing oligonucleotides are irradiated. One of these, a thietane/S(5)-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S(4)TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S(4)TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S(4)TdR/UVA indicating that these lesions contribute significantly to S(4)TdR/UVA cytotoxicity.


Asunto(s)
Daño del ADN , Timidina/análogos & derivados , Rayos Ultravioleta , Animales , Línea Celular , Cricetinae , ADN/química , ADN/metabolismo , Reparación del ADN , Humanos , Mutagénesis , Oligonucleótidos/química , Dímeros de Pirimidina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/anatomía & histología , Piel/efectos de la radiación , Timidina/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA