Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 41(1): 130-140, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35340049

RESUMEN

Treatment of large bone defects with supraphysiological doses of bone morphogenetic protein-2 (BMP-2) has been associated with complications including heterotopic ossification (HO), inflammation, and pain, presumably due to poor spatiotemporal control of BMP-2. We have previously recapitulated extensive HO in our rat femoral segmental defect model by treatment with high-dose BMP-2 (30 µg). Using this model and BMP-2 dose, our objective was to evaluate the utility of a clinically available human amniotic membrane (AM) around the defect space for guided bone regeneration and reduction of HO. We hypothesized that AM surrounding collagen sponge would attenuate heterotopic ossification compared with collagen sponge alone. In vitro, AM retained more BMP-2 than a synthetic poly(ε-caprolactone) membrane through 21 days. In vivo, as hypothesized, the collagen + AM resulted in significantly less heterotopic ossification and correspondingly, lower total bone volume (BV), compared with collagen sponge alone. Although bone formation within the defect was delayed with AM around the defect, by 12 weeks, defect BVs were equivalent. Torsional stiffness was significantly reduced with AM but was equivalent to that of intact bone. Collagen + AM resulted in the formation of dense fibrous tissue and mineralized tissue, while the collagen group contained primarily mineralized tissue surrounded by marrow-like structures. Especially in conjunction with high doses of growth factor delivered via collagen sponge, these findings suggest AM may be effective as an overlay adjacent to bone healing sites to spatially direct bone regeneration and minimize heterotopic ossification.


Asunto(s)
Amnios , Colágeno , Humanos , Animales , Ratas , Proteínas Morfogenéticas Óseas
2.
Tissue Eng Part A ; 23(17-18): 989-1000, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28372522

RESUMEN

High velocity impact injuries can often result in loss of large skeletal muscle mass, creating defects devoid of matrix, cells, and vasculature. Functional regeneration within these regions of large volumetric muscle loss (VML) continues to be a significant clinical challenge. Large cell-seeded, space-filling tissue-engineered constructs that may augment regeneration require adequate vascularization to maintain cell viability. However, the long-term effect of improved vascularization and the effect of addition of myoblasts to vascularized constructs have not been determined in large VMLs. Here, our objective was to create a new VML model, consisting of a full-thickness, single muscle defect, in the rat biceps femoris muscle, and evaluate the ability of myoblast-seeded vascularized collagen hydrogel constructs to augment VML regeneration. Adipose-derived microvessels were cultured with or without myoblasts to form vascular networks within collagen constructs. In the animal model, the VML injury was created in the left hind limb, and treated with the harvested autograft itself, constructs with microvessel fragments (MVF) only, constructs with microvessels and myoblasts (MVF+Myoblasts), or left empty. We evaluated the formation of vascular networks in vitro by light microscopy, and the capacity of vascularized constructs to augment early revascularization and muscle regeneration in the VML using perfusion angiography and creatine kinase activity, respectively. Myoblasts (Pax7+) were able to differentiate into myotubes (sarcomeric myosin MF20+) in vitro. The MVF+Myoblast group showed longer and more branched microvascular networks than the MVF group in vitro, but showed similar overall defect site vascular volumes at 2 weeks postimplantation by microcomputed tomography angiography. However, a larger number of small-diameter vessels were observed in the vascularized construct-treated groups. Yet, both vascularized implant groups showed primarily fibrotic tissue with adipose infiltration, poor maintenance of tissue volume within the VML, and little muscle regeneration. These data suggest that while vascularization may play an important supportive role, other factors besides adequate vascularity may determine the fate of regenerating volumetric muscle defects.


Asunto(s)
Células Inmovilizadas , Colágeno/química , Músculos Isquiosurales , Mioblastos Esqueléticos , Regeneración , Andamios del Tejido/química , Animales , Autoinjertos , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Células Inmovilizadas/trasplante , Modelos Animales de Enfermedad , Femenino , Músculos Isquiosurales/irrigación sanguínea , Músculos Isquiosurales/lesiones , Músculos Isquiosurales/patología , Músculos Isquiosurales/fisiología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Mioblastos Esqueléticos/trasplante , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA