Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(6): 5479-5488, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38282482

RESUMEN

The excited state relaxation dynamics of V-shaped D-π-A systems having 4H-pyranylidene appended barbituric acid as an acceptor and diphenylamine (TPAPBA) and diethyl amine (EAPBA) as donors were investigated using steady-state and time-resolved spectroscopy along with theoretical optimization. The steady-state photophysical characterization exhibited the bathochromic shift of the emission maximum (∼6400 cm-1) and large change in the dipole moment (∼24D) with an increase of solvent polarity, reflecting the occurrence of the intramolecular charge transfer state (ICT) in the excited state. The nanosecond and femtosecond transient absorption spectra of these derivatives in a non-polar solvent, toluene, reveal that the excited state relaxation pathway involving a local excited state (LE) decayed to ICT followed by the formation of a twisted ICT state by conformational relaxation, finally leading to the triplet state. The lack of observation of a triplet state in the polar solvent, acetonitrile, signifies that the relaxation dynamics of V-shaped triads in the excited state are influenced by the polarity of the solvent.

2.
Chem Asian J ; 18(24): e202300868, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37917150

RESUMEN

The photophysical properties of dyes composed of two squaraine chromophores fused with a benzodipyrrole central moiety (BS1 and BS2), were investigated using steady-state absorption, fluorescence, and transient absorption spectroscopy. The dyes exhibit solvent-independent split electronic absorption due to exciton-coupling. Interestingly significant solvent-dependent fluorescence properties were observed. In toluene, they emit from the lowest excited state, while in methanol, they show weak emission in the higher energy region. In the low-temperature glass matrix, emission from the lowest excited state dominates similarly to that in toluene. The transient absorption spectra exhibit similar ground-state bleaching in toluene and methanol, revealing the formation of delocalized excited states by exciton coupling independent of solvent. However, the excited state deactivates rapidly in ultrafast time scale in methanol, likely due to solvent interaction, leading to rapid non-radiative deactivation. The PEG film doped with the exciton-coupled bis-squaraine shows a distinct fluorescence response to methanol vapor.

3.
Phys Chem Chem Phys ; 25(39): 26575-26587, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753725

RESUMEN

Multibranched donor-acceptor derivatives exhibiting desirable photophysical properties are efficiently used in optoelectronic devices, in which the excited state relaxation dynamics of the derivatives control the efficiency of the devices. Here, the effect of intramolecular torsion on the excited state relaxation dynamics of tetraphenylpyrazine (TPP) derivatives in non-polar (toluene) and polar (THF) solvents is investigated by substituting the electron donor of morpholine (TPP-4MOP) and phenoxazine (TPP-4PHO) leading to the planar and twisted configurations, respectively, using femtosecond and nanosecond transient absorption spectroscopy. In the steady state, TPP-4MOP showed feeble emission (ΦF ∼0.03) due to the weak donor by the delocalization of electron density supported by theoretical optimization. The TPP-4PHO exhibited strong emission (ΦF ∼0.18) in toluene compared to that in THF, in which it showed a large Stokes shift (∼9691 cm-1) with low fluorescence quantum yield (ΦF ∼0.01). The observation of large Stokes shifts, inherent nature and theoretical calculations of TPP-4PHO suggest the twisting of the dihedral angle between tetraphenylpyrazine and phenoxazine in the excited state leading to the twisted intramolecular charge transfer state (TICT). The femtosecond and nanosecond transient absorption and picosecond time-resolved emission spectra of TPP-4PHO revealed the signature of the existence of both the partial TICT and TICT states in THF leading to the triplet state. Whereas in the case of TPP-4MOP, the transient absorption spectra showed the formation of the triplet state from the local excited state without the involvement of the TICT state. Aggregation studies of TPP-4PHO in a THF and water mixture reflect the elimination of the TICT state by the restriction of intramolecular torsion in the aggregates leading to an increase of 12-fold of the fluorescence intensity along with shifting of the maximum towards the blue region. These studies revealed that the excited state relaxation pathways of the derivatives are controlled by polarity-dependent torsional motion.

4.
Chem Asian J ; 18(3): e202201112, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36546595

RESUMEN

The light-controlled excited state trans-cis isomerization process is a key to the development of conversion of light energy to mechanical motion at the molecular level. Considerable efforts have been made in tuning the isomerization process with electron donor and acceptor substituents by altering the excited state reaction coordinate. Here, we report a two novel push-pull series of para-diethylamino (DEA) and diphenylamino (DPA) substituted (E)-4'-((4-(diethylamino)phenyl)diazenyl)-N,N-diphenyl-[1,1'-biphenyl]-4-amine (1) and (E)-4'-((4-(diphenylamino)phenyl)diazenyl)-N,N-diphenyl-[1,1'-biphenyl]-4-amine (2). Compounds 1 and 2 undergo both photochemical and photophysical excited state deactivation pathways which can be controlled by varying the solvent polarity. These structural motifs of 1 and 2 would undergo torsional motions upon excitation to exhibit either trans→cis photoisomerization or to form a twisted intramolecular charge transfer state and both the process originates from the same excited state and competes with each other. Thus, alternations in the surrounding environment such as solvent polarity, solution viscosity, and protonation were employed to understand the preferential excited state deactivation pathway and thereby these systems could be employed as a new class of azobenzene-based luminescent photochromic molecules. For instance, in nonpolar solvent, toluene photoisomerization is preferred over TICT, but polar solvent, ethanol preferentially stabilizes the TICT state by virtue of N-C rotation which renders the energy barrier unfavourable for photoisomerization. The photostationary state of 1 in toluene is predominantly the Z isomer, whereas in ethanol E isomer is nearly two-fold higher than the Z isomer. These feature sets up a new approach towards the construction of multinary molecular switches and subsequent development in diverse fields.

5.
J Am Chem Soc ; 144(30): 13499-13510, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862745

RESUMEN

The unique four-level photocycle characteristics of excited-state intramolecular proton transfer (ESIPT) materials enable population inversion and large spectral separation between absorption and emission through their respective enol and keto forms. This leads to minimal or no self-absorption losses, a favorable feature in acting as an optical gain medium. While conventional ESIPT materials with an enol-keto tautomerism process are widely known, zwitterionic ESIPT materials, particularly those with high photoluminescence, are scarce. Facilitated by the synthesis and characterization of a new family of 2-hydroxyphenyl benzothiazole (HBT) with fluorene substituents, HBT-Fl1 and HBT-Fl2, we herein report the first efficient zwitterionic ESIPT lasing material (HBT-Fl2). The zwitterionic ESIPT HBT-Fl2 not only shows a remarkably low solid-state amplified spontaneous emission (ASE) threshold of 5.3 µJ/cm2 with an ASE peak at 609 nm but also exhibits high ASE photostability. Coupled with its substantially large Stokes shift (≈236 nm ≈10,390 cm-1) and an extremely small overlap of excited-state absorption with ASE emission, comprehensive density functional theory (DFT) and time-dependent DFT studies reveal the zwitterionic characteristics of HBT-Fl2. In opposition to conventional ESIPT with π-delocalized tautomerism as observed in analogue HBT-Fl1 and parent HBT, HBT-Fl2 instead shows charge redistribution in the proton transfer through the fluorene conjugation. This structural motif provides a design tactic in the innovation of new zwitterionic ESIPT materials for efficient light amplification in red and longer-wavelength emission.


Asunto(s)
Fluorenos , Protones
6.
J Phys Chem B ; 126(24): 4509-4519, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35679578

RESUMEN

Among near-infrared (NIR) dyes, squaraine derivatives are applied as efficient sensitizers in optoelectronic and biomedical devices due to their simple synthesis, intense absorption, and emission and exceptional photochemical stability. The fundamental understanding of the structure-property relationships of sensitizers provides the insight to increase the efficiency of such devices. Here, unsymmetrical squaraine derivatives (ABSQs) with donor-acceptor-donor (D-A-D') architectures having N,N-dimethyl amino anthracene and benzothiazole (ABSQ-H) halogenated with fluoride (ABSQ-F), chloride (ABSQ-Cl), and bromide (ABSQ-Br) were synthesized to understand the effect of halogen on the photophysical properties and intermolecular interaction dynamics with phenyl-C61-butyric acid methyl ester (PCBM), which is used widely as an electron acceptor in bulk heterojunction-based devices. Interestingly, ABSQ-H exhibited intense absorption (ε ∼ 6.72 × 104 M-1 cm-1) spectra centered at ∼660 nm. Upon halogen substitution, a bathochromic shift in the absorption spectra with an increase of molar absorptivity was observed (ε ∼ 8.59 × 104 M-1 cm-1), which is beneficial for NIR light harvesting. The femtosecond transient absorption spectra of ABSQs revealed that the polarity of the solvent controlled the excited-state relaxation dynamics. Upon addition of PCBM, the fluorescence intensity and dynamics of halogenated ABSQs were quenched, and the formation of a squaraine radical cation was observed, reflecting the occurrence of intermolecular charge-transfer dynamics between ABSQs and PCBM. Thus, the observation of a bathochromic shift with intense absorption and an efficient intermolecular interaction with PCBM upon halogenation of ABSQs provide a design strategy for the development of unsymmetrical squaraine derivatives for bulk heterojunction-based optoelectronic devices.


Asunto(s)
Ciclobutanos , Halógenos , Fenoles , Solventes
7.
Chem Asian J ; 17(13): e202200227, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333439

RESUMEN

Exciton interactions are not only observed in assembled molecules but also in compounds with multiple chromophores referred to as superchromophores. We have developed isomeric bis-squaraine dyes as superchromophores in which two squaraine chromophores are fused onto the isomeric benzodipyrrole skeleton so as to regulate conformations and to reduce distances between two chromophores. The dyes with benzo[1,2-b:3,4-b']dipyrrole and benzo[1,2-b:5,4-b']dipyrrole moieties exhibited split electronic absorption originated from the intramolecular exciton interaction. The intensity of the split absorption bands varies in correlation with the orientation of chromophores. The isomeric dye with benzo[1,2-b:4,5-b']dipyrrole moiety exhibited a near-infrared absorption associated with the resonance throughout two chromophores. Their electrochemical and spectroelectrochemical properties are distinct from those of monomeric dyes owing to electronic interactions between the two chromophores. Thus, the structural isomerism of the central skeleton significantly affects their optical properties as well as their electrochemical properties.


Asunto(s)
Ciclobutanos , Colorantes Fluorescentes , Ciclobutanos/química , Colorantes Fluorescentes/química , Isomerismo , Fenoles/química
8.
J Phys Chem B ; 126(5): 1054-1062, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35107283

RESUMEN

The role of excimer formation in inhibiting or enhancing the efficiency of the intramolecular singlet fission (iSF) process has been a subject of recent debate. Here, we investigated the effect of excimer formation on iSF dynamics by modifying its configuration by connecting pentacenes at various positions. Hence, pentacene dimers having slip-stacked (2,2' BP, J-type), oblique (2,6' BP), and facial (6,6' BP, H-type) configurations were synthesized by covalently linking pentacenes at positions 2,2', 2,6', and 6,6', respectively, with an ethynyl bridge, and their ultrafast excited-state relaxation dynamics were characterized. Femtosecond time-resolved transient absorption spectra revealed that the efficiency of iSF dynamics decreased from slip-stacked (182%) to oblique configuration (97%),whereas in the 6,6' BP with facial configuration, strong electronic coupling led to the formation of excimers that decayed nonradiatively without formation of correlated triplet pairs. These studies reveal the formation of excimers by strong intrapentacene electronic coupling upon ultrafast excitation, preventing the efficient iSF process.


Asunto(s)
Naftacenos
9.
J Phys Chem B ; 125(1): 231-239, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33371685

RESUMEN

Singlet fission (SF) improves the power conversion efficiency of optoelectronic devices by converting high-energy photons into two triplet excitons. SF dynamics and efficiency (Φ) are controlled by various factors. Here, the effect of planarity and length of the bridge in pentacene dimers on the intramolecular SF (iSF) process was investigated by synthesizing the dimers connected by bridges having fluorene (FL-PD, planar), methyl-substituted biphenyl (MBP-PD, twisted), and diphenyl acetylene (DPA-PD, longer) groups and characterizing their excited-state relaxation dynamics using nanosecond and femtosecond pump-probe spectroscopy. Transient absorption studies reveal that iSF dynamics of FL-PD having a planar bridge are ∼787 times faster (187 ps) and exhibit higher Φ (198%) by feasible electronic coupling, compared to MBP-PD possessing a twisted bridge showing a low Φ of ∼16%. However compared to FL-PD, iSF dynamics of DPA-PD with an increase of bridge length are slower by an order (1.09 ns) and show comparable Φ of 185% through extended conjugation. Thus, the planarity and length of the bridge in pentacene dimers control the rate and efficiency of the iSF process.

10.
J Phys Chem B ; 124(14): 2769-2777, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182433

RESUMEN

The ubiquitous electron transfer heme protein, Cytochrome c (Cyt c) catalyzes the peroxidation of cardiolipin (CL) in the early stage of apoptosis, where Cyt c undergoes conformational changes leading to the partial unfolding of the protein. Here the interaction dynamics of Cyt c with liposomes having different charges [CL, - 2; POPG (2-Oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt), -1; and POPC (2-Oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine), 0] leading to various degrees of partial unfolding is investigated with steady state optical spectroscopy and femtosecond time-resolved pump-probe spectroscopy. The signature of the partial unfolding of the protein was observed in the absorption, fluorescence, and CD spectra of Cyt c-liposome complexes with an increase of lipid/protein (L/P) ratio, and the protein was refolded by the addition of 0.1 M of NaCl. The femtosecond transient absorption spectra of the complexes were measured by selectively exciting the heme and tryptophan (Trp) at 385 and 280 nm, respectively. Though significant changes were not observed in the excited state relaxation dynamics of the heme in liposomes by exciting at 385 nm, the 280 nm excitation exhibited a systematic increase of the excited state relaxation dynamics leading to the increase of lifetime of Trp and global conformational relaxation dynamics with the increase of anionic charge of the lipids. This reveals the decrease of efficiency of fluorescence resonance energy transfer from Trp to heme due to the increase of distance between them upon increase of partial unfolding of the proteins by liposomes. Such observation exhibits the Trp as a marker amino acid to reflect the dynamics of partial unfolding of the protein rising from the change in the tertiary structure and axial ligand interaction of the heme proteins in liposomes. The relaxation dynamics of the complexes in the presence of salt are similar to that of the protein alone, reflecting that the refolding of the protein and the interactions are dominated by electrostatic interaction rather than the hydrophobic interaction.


Asunto(s)
Citocromos c , Liposomas , Cardiolipinas , Hemo , Fosfolípidos
11.
Phys Chem Chem Phys ; 21(21): 11087-11102, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31094371

RESUMEN

Photoinduced charge and energy transfer are significant photophysical processes controlling the efficiency of photosynthesis and molecular electronics. Here, the influence of solvent polarity and excitation wavelength on the dynamics of excited state relaxation pathways of a push-pull chromophore (PXFCN), where phenoxazine and cyano fluorene acted as a donor and an acceptor, respectively, is investigated in detail by using steady state spectroscopy, nanosecond and femtosecond transient absorption spectroscopy and picosecond emission spectroscopy. In acetonitrile (ACN), the steady state emission spectra of PXFCN exhibited three maxima at around 330, 405 and 620 nm covering the complete continuum range (CIE coordinates of 0.32, 0.40) with an absolute quantum yield of ≈0.12. The aggregation induced emission with an increased quantum yield of ≈0.32 was observed in a tetrahydrofuran and water mixture due to the formation of nano-aggregates. Interestingly the steady state and time resolved emission spectra of PXFCN in ACN obtained upon excitation at different wavelengths revealed the presence of both intramolecular charge and energy transfer processes, whereas in cyclohexane (CHX) the emission originated mainly from the local excited state revealing efficient intramolecular energy transfer. The femtosecond transient absorption spectrum in the polar solvent, ACN, shows that the excited state relaxation pathway is controlled by solvent stabilized twisted intramolecular charge transfer dynamics limiting the formation of the triplet state. However in the case of CHX, the charge transfer state formed upon photoexcitation decayed to the triplet state by geminate charge recombination. The nanosecond transient absorption spectra manifest the dominant feature of the triplet state and the charge transfer state in CHX and ACN, respectively, and their complete dynamics were obtained. Thus based on the transient absorption and emission spectra, it is inferred that the intramolecular charge transfer occurring along with the energy transfer is controlled by the polarity of the solvent through conformational changes leading to a favourable position yielding the charge and energy transfer between the donor and acceptor moieties.

12.
J Phys Chem B ; 123(10): 2316-2324, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30789731

RESUMEN

Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore. Femtosecond transient absorption spectra exhibited that the excited state relaxation dynamics of red-shifted GFP (rGFP) (τ4 = 234 ps) are faster compared to the A. victoria green fluorescent protein (τ4 = 3.0 ns). The nanosecond time-resolved emission spectra of rGFP reveal the continuous spectral shift during emission by a solvent reorientation in the chromophore. Finally, the molecular dynamics simulations revealed the rearrangement of the hydrogen bond interactions in the chromophore vicinity, reshaping the symmetric distribution of van der Waals space to fine tune the GFP structure resulting from highly red-shifted rGFP.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Ingeniería de Proteínas/métodos , Animales , Compuestos de Bencilo/química , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/genética , Enlace de Hidrógeno , Imidazolinas/química , Proteínas Luminiscentes/genética , Simulación de Dinámica Molecular , Mutación , Electricidad Estática , Proteína Fluorescente Roja
13.
Inorg Chem ; 57(17): 10702-10717, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30106571

RESUMEN

With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, new compounds with four equatorially bound indazole ligands, namely, trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes with two deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively characterized by spectroscopic (IR, UV-vis, 1H NMR) techniques. Compound [2], as well as [3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO, and [5]·0.8CH2Cl2, the latter three obtained by recrystallization of the first isolated compounds (hydrates or anhydrous species) from acetone and dichloromethane, respectively, were studied by X-ray diffraction methods. The photoinduced release of NO in [3]Cl2 and [4]Cl2 was investigated by cyclic voltammetry and resulting paramagnetic NO species were detected by EPR spectroscopy. The quantum yields of NO release were calculated and found to be low (3-6%), which could be explained by NO dissociation and recombination dynamics, assessed by femtosecond pump-probe spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or submicromolar concentration range and are suitable for further development as potential anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and p53-independent mode of action was confirmed. The effects of NO release on the cytotoxicity of the complexes with or without light irradiation were investigated using NO scavenger carboxy-PTIO.


Asunto(s)
Indazoles/química , Óxido Nítrico/química , Óxidos de Nitrógeno , Compuestos Organometálicos , Rutenio , Antineoplásicos/química , Antineoplásicos/farmacología , Western Blotting , Supervivencia Celular , Cisplatino/farmacología , Estabilidad de Medicamentos , Electroquímica , Células HCT116 , Humanos , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/farmacología , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Teoría Cuántica , Rutenio/química , Rutenio/farmacología , Agua/química , Difracción de Rayos X
14.
J Phys Chem B ; 121(14): 3111-3120, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28328227

RESUMEN

Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ1), back electron transfer from metal to ligand (MLCT, τ2), and relaxation to the ground state through different electronic spin states of iron (τ3 and τ4) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.


Asunto(s)
Electrones , Hemo/química , Simulación de Dinámica Molecular , Teoría Cuántica , Vibración , Procesos Fotoquímicos
15.
J Phys Chem B ; 120(28): 7016-23, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27347705

RESUMEN

Interaction of light with electron donor-acceptor π-conjugated systems leading to intramolecular charge transfer (ICT) plays an essential role in transformation of light energy. Here the cascade of photoinduced ICT processes is directly observed by investigating the excited state relaxation dynamics of cyano and mono/di methoxy substituted diphenyl acetylene derivatives using femtosecond pump-probe spectroscopy and nanosecond laser flash photolysis. The femtosecond transient absorption spectra of the chromophores upon ultrafast excitation reveal the dynamics of intermediates involved in transition from initially populated Frank-Condon state to local excited state (LE). It also provides the dynamic details of the transition from the LE to the charge transfer state yielding the formation of the radical ions. Finally, the charge transfer state decays to the triplet state by geminate charge recombination. The latter dynamics are observed in the nanosecond transient absorption spectra. It is found that excited state relaxation pathways are controlled by different stages of solvation and intramolecular relaxation depending on the solvent polarity. The twisted ICT state is more stabilized (978 ps) in acetonitrile than cyclohexane where major components of transient absorption originate from the S1 state.

16.
Chem Sci ; 7(7): 4460-4467, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155094

RESUMEN

To ensure the comfortable survival of living organisms, detection of different life threatening volatile organic compounds (VOCs) such as biological metabolites and carcinogenic molecules is of prime importance. Herein, we report the use of supercoiled supramolecular polymeric fibres of self-sorted donor-acceptor molecules as "turn-off/turn-on" fluorescent sensors for the detection of carcinogenic VOCs. For this purpose, a C3-symmetrical donor molecule based on oligo(p-phenylenevinylene), C3OPV, and a perylene bisimide based acceptor molecule, C3PBI, have been synthesized. When these two molecules were mixed together in toluene, in contrast to the usual charge transfer (CT) stacking, supramolecular fibres of self-sorted stacks were formed at the molecular level, primarily driven by their distinct self-assembly pathways. However, CT interaction at the macroscopic level allows these fibres to bundle together to form supercoiled ropes. An interfacial photoinduced electron transfer (PET) process from the donor to the acceptor fibres leads to an initial fluorescence quenching, which could be modulated by exposure to strong donor or acceptor type VOCs to regenerate the respective fluorescence of the individual molecular stacks. Thus, strong donors could regenerate the green fluorescence of C3OPV stacks and strong acceptors could reactivate the red fluorescence of C3PBI stacks. These supercoiled supramolecular ropes of self-sorted donor-acceptor stacks provide a simple tool for the detection of donor- or acceptor-type VOCs of biological relevance, using a "turn-off/turn-on" fluorescence mechanism as demonstrated with o-toluidine, which has been reported as a lung cancer marker.

17.
Chemphyschem ; 16(18): 3974-83, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26416435

RESUMEN

The excited-state dynamics of ferric cytochrome c (Cyt c), an important electron-transfer heme protein, in acidic to alkaline medium and in its unfolded form are investigated by using femtosecond pump-probe spectroscopy, exciting the heme and Tryptophan (Trp) to understand the electronic, vibrational, and conformational relaxation of the heme. At 390 nm excitation, the electronic relaxation of heme is found to be ≈150 fs at different pH values, increasing to 480 fs in the unfolded form. Multistep vibrational relaxation dynamics of the heme, including fast and slow processes, are observed at pH 7. However, in the unfolded form and at pH 2 and 11, fast phases of vibrational relaxation dominate, revealing the energy dissipation occurring through the covalent bond interaction between the heme and the nearest amino acids. A significant shortening of the excited-state lifetime of Trp is observed at various pH values at 280 nm excitation due to resonance energy transfer to the heme. The longer time constant (25 ps) observed in the unfolded form is attributed to a complete global conformational relaxation of Cyt c.


Asunto(s)
Citocromos c/química , Hemo/química , Animales , Dicroismo Circular , Caballos , Modelos Moleculares , Conformación Proteica , Espectrofotometría Ultravioleta
18.
Phys Chem Chem Phys ; 17(28): 18768-79, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26118371

RESUMEN

Detailed photophysical properties of cyano and mono (MA)/bis alkoxy (DA) substituted diphenylacetylene moieties with different alkyl chain lengths (methyl (1), octyl (8) and dodecyl (12)) were investigated in solution and the solid state in an effort to determine the effect of self-aggregation on these properties. The solvated molecules showed a minimal bathochromic shift with an increase of solvent polarity in their absorption spectra, whereas a significant shift was observed in the emission spectra. This could be attributed to the relatively low change in dipole moment between ground and Franck-Condon excited states and luminescence arising from the intramolecular charge transfer state with a dipole moment significantly higher than that of the ground state. In solid state the emission quantum yields of these materials were significantly higher than in solution. For DA1, polymorphic materials with distinct photophysical properties were obtained. The DA1 materials obtained by fast precipitation (DA1) showed broad fluorescence with peaks at 398, 467 and 535 nm upon excitation at different wavelengths. Detailed analysis of absorption, emission and excitation spectra and lifetime experiments indicated that these peaks could be attributed to the monomer, J- and H-type aggregates respectively. Whereas the crystals obtained by slow crystallization (DA1C) showed only one emission peak at around 396 nm attributed to the monomer. This is supported by the single crystal X-ray structure which consists of a monomer molecule having minimal interaction with nearest neighbour molecules.


Asunto(s)
Acetileno/análogos & derivados , Acetileno/química , Cristalografía por Rayos X , Electrones , Conformación Molecular , Teoría Cuántica , Soluciones/química , Espectrometría de Fluorescencia
19.
J Phys Chem B ; 118(23): 6062-70, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24823442

RESUMEN

Femtosecond vibrational coherence spectroscopy is used to investigate the low frequency vibrational dynamics of the electron transfer heme protein, cytochrome c (cyt c). The vibrational coherence spectra of ferric cyt c have been measured as a function of excitation wavelength within the Soret band. Vibrational coherence spectra obtained with excitation between 412 and 421 nm display a strong mode at ~44 cm(-1) that has been assigned to have a significant contribution from heme ruffling motion in the electronic ground state. This assignment is based partially on the presence of a large heme ruffling distortion in the normal coordinate structural decomposition (NSD) analysis of the X-ray crystal structures. When the excitation wavelength is moved into the ~421-435 nm region, the transient absorption increases along with the relative intensity of two modes near ~55 and 30 cm(-1). The intensity of the mode near 44 cm(-1) appears to minimize in this region and then recover (but with an opposite phase compared to the blue excitation) when the laser is tuned to 443 nm. These observations are consistent with the superposition of both ground and excited state coherence in the 421-435 nm region due to the excitation of a weak porphyrin-to-iron charge transfer (CT) state, which has a lifetime long enough to observe vibrational coherence. The mode near 55 cm(-1) is suggested to arise from ruffling in a transient CT state that has a less ruffled heme due to its iron d(6) configuration.


Asunto(s)
Citocromos c/química , Animales , Hemo/química , Caballos , Iones/química , Hierro/química , Movimiento (Física) , Conformación Proteica , Espectrometría Raman , Vibración
20.
Phys Chem Chem Phys ; 16(21): 10149-56, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24584716

RESUMEN

New multiple photosynthetic reaction centers were constructed from cyclophosphazene decorated multiporphyrin chromophores and a fulleropyrrolidine having a pyridine ligand (FPY). The excited state electron transfer in the self-assembled donor-acceptor assembly was investigated by using steady state absorption and emission, time-resolved emission spectroscopy and nanosecond laser flash photolysis. The effect of metal (Zn(2+)) coordination to porphyrin units in the multiporphyrin arrays on cyclophosphazine scaffold (P3N3Zn) was studied by comparing with metal free porphyrin assembly on a cyclophosphazene scaffold (P3N3). In P3N3Zn, the decrease of absorption and fluorescence intensity and the lowering of the amplitude of longer fluorescence lifetime with increase of FPY concentration reflect the formation of a ground state complex with an association constant of ∼14,910 M(-1). When compared to the metal-free complex P3N3, the metal-coordinated derivative P3N3Zn exhibited shortening of the singlet and triplet state lifetimes and lowering of the singlet and triplet quantum yields. The cause of the decrease of the triplet quantum yields by insertion of zinc metal is discussed along with the possible non-planarity of the porphyrin ring. From the fluorescence lifetime measurements for the P3N3Zn-FPY mixture, it is proposed that self-assembly of the donor-acceptor complex leads to charge separated species with a rate constant of 7.1 × 10(9) s(-1). The decrease of triplet state intensity and lifetime of the P3N3Zn in the P3N3Zn-FPY complex from the nanosecond transient absorption studies support the occurrence of intermolecular electron transfer in the triplet state.


Asunto(s)
Nitrilos/química , Compuestos de Fósforo/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Porfirinas/química , Pirrolidinas/química , Fotoquímica , Física , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...