Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 4(3): eaat1296, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29546246

RESUMEN

The technical comment from Sanderman provides a unique opportunity to deepen our understanding of the mechanisms explaining the role of paleoclimate in the contemporary distribution of global soil C content, as reported in our article. Sanderman argues that the role of paleoclimate in predicting soil C content might be accounted for by using slowly changing soil properties as predictors. This is a key point that we highlighted in the supplementary materials of our article, which demonstrated, to the degree possible given available data, that soil properties alone cannot account for the unique portion of the variation in soil C explained by paleoclimate. Sanderman also raised an interesting question about how paleoclimate might explain the contemporary amount of C in our soils if such a C is relatively new, particularly in the topsoil layer. There is one relatively simple, yet plausible, reason. A soil with a higher amount of C, a consequence of accumulation over millennia, might promote higher contemporary C fixation rates, leading to a higher amount of new C in our soils. Thus, paleoclimate can be a good predictor of the amount of soil C in soil, but not necessarily of its age. In summary, Sanderman did not question the validity of our results but rather provides an alternative potential mechanistic explanation for the conclusion of our original article, that is, that paleoclimate explains a unique portion of the global variation of soil C content that cannot be accounted for by current climate, vegetation attributes, or soil properties.


Asunto(s)
Carbono , Suelo , Clima , Ecosistema
2.
Sci Adv ; 3(4): e1602008, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28439540

RESUMEN

Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios.

3.
Nat Commun ; 6: 8444, 2015 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-26436640

RESUMEN

The continuum hypothesis states that both deterministic and stochastic processes contribute to the assembly of ecological communities. However, the contextual dependency of these processes remains an open question that imposes strong limitations on predictions of community responses to environmental change. Here we measure community and habitat turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and fungi, both dominant and functionally vital components of all soils but which differ substantially in their growth habit and dispersal capability. We find that habitat turnover is the primary driver of bacterial community turnover in general, although its importance decreases with increasing isolation and disturbance. Fungal communities, however, exhibit a highly stochastic assembly process, both neutral and non-neutral in nature, largely independent of disturbance. These findings suggest that increased focus on dispersal limitation and biotic interactions are necessary to manage and conserve the key ecosystem services provided by these assemblages.


Asunto(s)
Bacterias , Biota , Hongos , Microbiología del Suelo , Biodiversidad , Ecología , Ecosistema , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...