Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Renew Sustain Energy Rev ; 135: 110199, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34234620

RESUMEN

Financial Incentives (FIs) for green buildings are a major component of energy policy planning and play a vital role in the promotion of sustainable development and carbon mitigation strategies. Despite the presence of numerous FIs in Canada, there is still a lack of understanding on their distribution and effectiveness. This review first investigates the FIs available for residential and commercial buildings in Canada, and then performs a comprehensive review of studies related to FIs' effectiveness evaluation. It is found that FIs for buildings in Canada can be distributed into four categories: tax, loans, grants, and rebates. Among these, rebates from utility providers are the most common and are administered in all provinces. In addition to these, special incentives are available for three end-users (low-income, aboriginal people, landlords and tenants) and for three types of buildings (heritage, non-profit and energy rated). A clear contrast is observed on FIs offered in three regulatory regimes (Federal, provincial and municipal). Four provinces (Alberta, British Columbia, Ontario and Quebec) are leading in green building efforts. The in-depth literature review was also used to develop an understanding on the criteria used in effectiveness evaluation and the factors impacting effectiveness. Based on the findings of different studies on FIs effectiveness, a generic approach for evaluation of FIs is proposed that can help in deploying successful FIs programs. The results of this review are of importance to the policymakers, government authorities, and utilities engaged in designing and improving FIs for energy efficient buildings.

2.
J Clean Prod ; 271: 122430, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32834562

RESUMEN

Occupant behavior in residential buildings has a direct impact on the effectiveness of energy-saving measures. In order to realize a buildings' carbon mitigation targets, the impact of individual occupancy profiles needs to be integrated with building simulation models. This paper introduces a decision support framework as a potential solution to make energy performance upgrade choices based on different occupancy profiles. This framework has been demonstrated through a case study of two single-family detached homes in Canada, which were highly instrumented with sensors for monitoring energy input and output. The case studies represented two common occupancy profiles-(1) a family of four (consisting of 2 working adults and 2 teenagers); and (2) a retired couple. Firstly, calibrated energy models were developed by using one-year energy use data collected through an intrusive load monitoring technique. Secondly, energy upgrade combinations were considered for each profile and tested for additional investment, payback period and greenhouse gas (GHG) emissions. Lastly, the most suitable combination of energy upgrade for each profile was ranked using a multi-criteria decision-making method (e.g., TOPSIS). Results indicated that the retired couple used more energy than the family of four and required energy upgrades with usually higher payback periods to achieve the same level of GHG emission reduction. The results of this research are timely for energy policymaking and developing best management practices, which need to be implemented along with the deployment of more stringent building standards and codes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA