Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622727

RESUMEN

Genome transfer from a virus into a cell is a critical early step in viral replication. Enveloped viruses achieve the delivery of their genomes into the cytoplasm by merging the viral membrane with the cellular membrane via a conceptually simple mechanism called membrane fusion. In contrast, genome translocation mechanisms in nonenveloped viruses, which lack viral membranes, remain poorly understood. Although cellular assays provide useful information about cell entry and genome release, it is difficult to obtain detailed mechanistic insights due both to the inherent technical difficulties associated with direct visualization of these processes and to the prevalence of nonproductive events in cellular assays performed at a very high multiplicity of infection. To overcome these issues, we developed an in vitro single-particle fluorescence assay to characterize genome release from a nonenveloped virus (poliovirus) in real time using a tethered receptor-decorated liposome system. Our results suggest that poliovirus genome release is a complex process that consists of multiple rate-limiting steps. Interestingly, we found that the addition of exogenous wild-type capsid protein VP4, but not mutant VP4, enhanced the efficiency of genome translocation. These results, together with prior structural analysis, suggest that VP4 interacts with RNA directly and forms a protective, membrane-spanning channel during genome translocation. Furthermore, our data indicate that VP4 dynamically interacts with RNA, rather than forming a static tube for RNA translocation. This study provides new insights into poliovirus genome translocation and offers a cell-free assay that can be utilized broadly to investigate genome release processes in other nonenveloped viruses.IMPORTANCE The initial transfer of genomic material from a virus into a host cell is a key step in any viral infection. Consequently, understanding how viruses deliver their genomes into cells could reveal attractive therapeutic targets. Although conventional biochemical and cellular assays have provided useful information about cell entry, the mechanism used to deliver the viral genomes across the cellular membrane into the cytoplasm is not well characterized for nonenveloped viruses such as poliovirus. In this study, we developed a fluorescence imaging assay to visualize poliovirus genome release using a synthetic vesicle system. Our results not only provide new mechanistic insights into poliovirus genome translocation but also offer a cell-free assay to bridge gaps in understanding of this process in other nonenveloped viruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Genoma Viral/fisiología , Imagen Óptica/métodos , Poliovirus/genética , Poliovirus/fisiología , ARN Viral/metabolismo , Internalización del Virus , Proteínas de la Cápside/genética , Sistemas de Computación , Células HeLa , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Liposomas/metabolismo
2.
PLoS Pathog ; 16(9): e1008920, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997730

RESUMEN

The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.


Asunto(s)
Cápside/ultraestructura , Poliomielitis/metabolismo , ARN Viral/ultraestructura , Virión/ultraestructura , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , ARN Viral/metabolismo , Receptores Virales/metabolismo , Virión/metabolismo , Internalización del Virus
3.
J Virol ; 91(3)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852863

RESUMEN

By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. IMPORTANCE: When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events.


Asunto(s)
Microscopía por Crioelectrón , Poliovirus/ultraestructura , Virión/ultraestructura , Secuencia de Aminoácidos , Cápside/inmunología , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Humanos , Modelos Moleculares , Poliovirus/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Relación Estructura-Actividad , Virión/metabolismo
4.
mBio ; 5(6): e02172, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25389179

RESUMEN

UNLABELLED: Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. IMPORTANCE: In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont Bacteroides thetaiotaomicron in real time in live cells. These results represent the first working model of starch utilization system (Sus) complex assembly and function during glycan catabolism and are likely to describe aspects of how other Sus-like systems function in human gut Bacteroidetes. Our results provide unique mechanistic insights into a glycan catabolism strategy that is prevalent within the human gut microbial community. Proper understanding of this conserved nutrient uptake mechanism is essential for the development of dietary or pharmaceutical therapies to control intestinal tract microbial populations, to enhance human health, and to treat disease.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides/metabolismo , Tracto Gastrointestinal/microbiología , Imagen Óptica/métodos , Almidón/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Bacteroides/genética , Bacteroides/aislamiento & purificación , Técnicas de Inactivación de Genes , Humanos , Multimerización de Proteína
5.
RNA ; 20(1): 16-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243115

RESUMEN

The spliceosome catalyzes precursor-mRNA splicing in all eukaryotes. It consists of over 100 proteins and five small nuclear RNAs (snRNAs), including U2 and U6 snRNAs, which are essential for catalysis. Human and yeast snRNAs share structural similarities despite the fact that human snRNAs contain numerous post-transcriptional modifications. Although functions for these modifications have been proposed, their exact roles are still not well understood. To help elucidate these roles in pre-mRNA splicing, we have used single-molecule fluorescence to characterize the effect of several post-transcriptional modifications in U2 snRNA on the conformation and dynamics of the U2-U6 complex in vitro. Consistent with yeast, the human U2-U6 complex reveals the presence of a magnesium-dependent dynamic equilibrium among three conformations. Interestingly, our data show that modifications in human U2 stem I modulate the dynamic equilibrium of the U2-U6 complex by stabilizing the four-helix structure. However, the small magnitude of this effect suggests that post-transcriptional modifications in human snRNAs may have a primary role in the mediation of specific RNA-protein interactions in vivo.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Secuencia de Bases , Humanos , Cinética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Magnesio/farmacología , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Conformación Proteica/efectos de los fármacos
6.
Methods Mol Biol ; 848: 227-51, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22315073

RESUMEN

A procedure to investigate the folding of group II intron by single molecule Fluorescence Resonance Energy Transfer (smFRET) using total internal reflection fluorescence microscopy (TIRFM) is described in this chapter. Using our previous studies on the folding and dynamics of a large ribozyme in the presence of metal ions (i.e., Mg(2+) and Ca(2+)) and/or the DEAD-box protein Mss116 as an example, we here describe step-by-step procedures to perform experiments. smFRET allows the investigation of individual molecules, thus, providing kinetic and mechanistic information hidden in ensemble averaged experiments.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación de Ácido Nucleico , ARN Catalítico/química , Secuencia de Bases , Calibración , ARN Helicasas DEAD-box/metabolismo , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Intrones/genética , Cloruro de Magnesio/farmacología , Técnicas Analíticas Microfluídicas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Polietilenglicoles/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Nature ; 467(7318): 935-9, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20944626

RESUMEN

DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5γ. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 on folding dynamics of a minimal active construct, ai5γ-D135. The data show that Mss116 stimulates dynamic sampling between states along the folding pathway, an effect previously observed only with high Mg(2+) concentrations. Furthermore, the data indicate that Mss116 promotes folding through discrete ATP-independent and ATP-dependent steps. We propose that Mss116 stimulates group II intron folding through a multi-step process that involves electrostatic stabilization of early intermediates and ATP hydrolysis during the final stages of native state assembly.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Intrones/genética , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Hidrólisis , ARN Catalítico/química , ARN Catalítico/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Salinidad , Electricidad Estática , Termodinámica
8.
Nat Struct Mol Biol ; 16(11): 1154-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19881500

RESUMEN

Spliceosomes catalyze the maturation of precursor mRNAs in organisms ranging from yeast to humans. Their catalytic core comprises three small nuclear RNAs (U2, U5 and U6) involved in substrate positioning and catalysis. It has been postulated, but never shown experimentally, that the U2-U6 complex adopts at least two conformations that reflect different activation states. We have used single-molecule fluorescence to probe the structural dynamics of a protein-free RNA complex modeling U2-U6 from yeast and mutants of highly conserved regions of U2-U6. Our data show the presence of at least three distinct conformations in equilibrium. The minimal folding pathway consists of a two-step process with an obligatory intermediate. The first step is strongly magnesium dependent, and we provide evidence suggesting that the second step corresponds to the formation of the genetically conserved helix IB. Site-specific mutations in the highly conserved AGC triad and the U80 base in U6 suggest that the observed conformational dynamics correlate with residues that have an important role in splicing.


Asunto(s)
Empalme del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Transferencia Resonante de Energía de Fluorescencia , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Pliegue de Proteína , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Chem Phys Lett ; 476(1): 1-10, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20161154

RESUMEN

Over the past decade, single-molecule fluorescence studies have elucidated the structure-function relationship of RNA molecules. The real-time observation of individual RNAs by single-molecule fluorescence has unveiled the dynamic behavior of complex RNA systems in unprecedented detail, revealing the presence of transient intermediate states and their kinetic pathways. This review provides an overview of how single-molecule fluorescence has been used to explore the dynamics of RNA folding and catalysis.

10.
Proc Natl Acad Sci U S A ; 105(37): 13853-8, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18772388

RESUMEN

Group II intron ribozymes fold into their native structure by a unique stepwise process that involves an initial slow compaction followed by fast formation of the native state in a Mg(2+)-dependent manner. Single-molecule fluorescence reveals three distinct on-pathway conformations in dynamic equilibrium connected by relatively small activation barriers. From a most stable near-native state, the unobserved catalytically active conformer is reached. This most compact conformer occurs only transiently above 20 mM Mg(2+) and is stabilized by substrate binding, which together explain the slow cleavage of the ribozyme. Structural dynamics increase with increasing Mg(2+) concentrations, enabling the enzyme to reach its active state.


Asunto(s)
Intrones/genética , Autoempalme del ARN Ribosómico/genética , Autoempalme del ARN Ribosómico/metabolismo , Catálisis , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Autoempalme del ARN Ribosómico/química , Autoempalme del ARN Ribosómico/clasificación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA