Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 350: 141122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184078

RESUMEN

A few PAHs (polycyclic aromatic hydrocarbons) which are known to be pervasive and are of high priority are found to be detrimental pollutants having high potential in the destruction of the network. Hence, photocatalytic disintegration of these PAHs, namely benzo [a]pyrene, found in water is explored. A novel nanocomposite of Ag-Ni on g-C3N4 was fabricated. The prepared nanocomposites were characterized by techniques like UV, XRD, SEM-EDAX, FTIR, and DLS to understand their nature. The activity of the same as a catalyst in the deterioration of the benzopyrene molecule in water was investigated under different conditions including change in the concentration of the PAH, dosage of the catalyst prepared, pH of the reaction mixture, and by changing the source of irradiation. In addition, antibacterial analysis of the prepared nanocomposite material was conducted to determine whether it could be applied to environmental cleanup strategies of high quality.


Asunto(s)
Grafito , Nanocompuestos , Compuestos de Nitrógeno , Hidrocarburos Policíclicos Aromáticos , Plata/química , Benzo(a)pireno , Níquel , Luz , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química , Agua , Catálisis
2.
Chemosphere ; 344: 140125, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742759

RESUMEN

The research work aimed to explore the suitability of using a novel g- C3N4-Ag-Cu-Ni nanocomposite for the simultaneous degradation of pyrene in wastewater. The outcome revealed that the g- C3N4 phase was successfully fabricated on the g-C3N4-based compound, and the existence of the g- C3N4-based compound beneficially stabilized the Ag-Cu-Ni particles. The g- C3N4-Ag-Cu-Ni nanocomposite demonstrated excellent performance in pyrene degradation under various conditions. The degradation of pyrene increased with a rise in the dosage of g- C3N4-Ag-Cu-Ni. These findings indicate that the g- C3N4-Ag-Cu-Ni nanocomposite could be a promising material for water purification, especially for the simultaneous photocatalytic and antimicrobial treatment of contaminated water bodies. The study provides a helpful guide for future research in this field.


Asunto(s)
Nanocompuestos , Agua , Catálisis , Luz , Pirenos
3.
Environ Res ; 238(Pt 1): 117118, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704075

RESUMEN

A biofilm consists of Gram positive and Gram-negative bacteria enclosed in a matrix. Industrial biofouling is caused by biofilms, which can exhibit antimicrobial resistance during infections. Many biofilm studies find that nearly all biofilm communities consist of Gram positive and Gram-negative bacteria. It is therefore necessary to better understand the conserved themes in biofilm formation to develop therapeutics based on biofilm formation. Plant extracts can effectively combat pathogenic bacterial biofilms. This study evaluated the antibacterial and antibiofilm activity of Aerva lanata flower extract against Staphylococcus aureus and Pseudomonas aeruginosa. Methanol extract of dried A. lanata flower was tested against S. aureus and P. aeruginosa to determine the antibacterial activity (10, 25, 50, 75, 100 µg/mL) resulted in a maximum of 0.5-1 log reduction and 2 log reduction in comparison to the control or untreated bacterial cells respectively. A. lanata showed maximum biofilm inhibition up to 1.5-fold and 1-fold against P. aeruginosa and S. aureus. Light microscopic analysis of biofilm treated with A. lanata extract showed efficient distortion of the biofilm matrix. Further, the in vivo analysis of A. lanata in the Artemia salina brine shrimp model showed >50% survival and thus proving the efficacy of A. lanata extract in rescuing the brine shrimps against P. aeruginosa and S. aureus infection.


Asunto(s)
Artemia , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Bacterias Gramnegativas , Extractos Vegetales/farmacología , Flores , Biopelículas , Pruebas de Sensibilidad Microbiana
4.
Environ Res ; 231(Pt 1): 116079, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156353

RESUMEN

The tobacco cutworm, Spodoptera litura and cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) are important pests of various agricultural crops that cause sevier economic loses throughout the world. Indiscriminate and frequent use of insecticide may lead to development of resistance in these pests. Nanotechnology has given an alternative to manage and overcome insecticide resistance for pest management strategies. In the present study the iron nanoparticles derived from Trigonella foenum-graecum leaf extract (FeNPs) was investigated for its ecofriendly management of pyrethroid resistance in two lepidopteron pest species at 24 h, 48 h and 72 h post treatment. The result showed high mortality (92.83% and 91.41%) of S. litura and H. armigera at 72 h treatment upon FeNPs and fenvalerate (Fen + FeNPs) teratment. Probit analysis revealed high LC50 upon Fen + FeNPs treatment (130.31 and 89.32 mg/L) with a synergism ratio of 1.38 and 1.36. Antifeedant activity of six dofferent concentration of FeNPs revelaed increased antifeedant activity with respect to increasing concentration of nanoparticles ranging from 10 to 90% and 20-95% againt both insects (p<0.05). Detoxification activity of carboxylesterase was elevated at 630 µmol/mg protein/min (p<0.05) in fenvalerate treatment, whereas decreased activity was found (392umole/mg protein/min) in FeNPs and Fen + FeNPs treatment (P<0.001). GST and P450 activity was also increased in fenvalerate treatment, whereas decreased activity was observed in FeNPs and Fen + FeNPs. Esterase isoenzyme banding pattern revealed four bands in fenvalerate treatment and two bans (E3 and E4) in Fen + FeNPs combination. Hence the present study concludes that T. foenum-graecum synthesized iron nanoparticles could be an effective alternate for ecofriendly management of S. litura and H. armigera.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Nanopartículas , Trigonella , Animales , Spodoptera , Larva
5.
Environ Res ; 231(Pt 2): 116130, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201702

RESUMEN

Studies have investigating the detoxification and antioxidant enzymes with melatonin under pesticide stress in many vertebrates, whereas no reports produced in invertebrates. In this study possible role of melatonin and luzindole effect on fipronil toxicity and the detoxification, antioxidant enzymes in H. armigera has been reported. Result showed high toxicity of fipronil treatment (LC50 4.24 ppm), followed by increased LC50 value with melatonin pretreatment (6.44 ppm). Whereas decreased toxicity was observed with melatonin and luzindole combination (3.72 ppm). The detoxification enzymes AChE, esterase and P450 were increased in larval head and whole body with exogenous melatonin level compared to control 1-1.5 µmol/mg of protein. The antioxidant levels of CAT, SOD and GST in whole body and head tissue had been increased by melatonin and fipronil combination 1.1-1.4 unit/mg of protein followed by GPx and GR in larval head (1-1.2 µmol/mg of protein). Mean while the luzindole antagonist inhibits CAT, SOD, GST and GR oxidative enzyme level (1-1.5 fold) in most of the tissue compared to melatonin and fipronil treatment (p < 0.01). Hence this study concludes that the melatonin pretreatment can reduce the fipronil toxicity by enhanced detoxification and antioxidant enzyme system in H. armigera.


Asunto(s)
Melatonina , Mariposas Nocturnas , Animales , Antioxidantes/farmacología , Melatonina/farmacología , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Superóxido Dismutasa/metabolismo
6.
Environ Res ; 231(Pt 2): 116152, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224949

RESUMEN

The number of studies about the use of efficient techniques to treat contaminated water bodies has increased in recent years. The use of bioremediation method for the reduction of contaminants from aqueous system is receiving a lot of attention. Thus, this study was designed to assess the Eichhornia crassipes biochar amended pollutants sorption competence of multi-metal tolerant Aspergillus flavus on South Pennar River. The physicochemical characteristics declared that the, half of the parameters (turbidity, TDS, BOD, COD, Ca, Mg, Fe, free NH3, Cl-, and F-) of South Pennar River were beyond the permissible limits. Furthermore, the lab-scale bioremediation investigation with different treatment groups (group I, II, and III) revealed that the group III (E. crassipes biochar and A. flavus mycelial biomass) showed considerable remediation efficiency on South Pennar River water in 10 days of treatment. The metals adsorbed on the surface of E. crassipes biochar and A. flavus mycelial biomass was also affirmed by SEM analysis. Hence such findings, E. crassipes biochar amended A. flavus mycelial biomass could be a sustainable method of remediating contaminated South Pennar River water.


Asunto(s)
Eichhornia , Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Metales/análisis , Biodegradación Ambiental
7.
Environ Res ; 231(Pt 2): 116209, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217129

RESUMEN

Bemisia tabaci Gennadius, also renowned as the silver leaf whitefly, is among the most damaging polyphagous insect pests in many commercially important crops and commodities. A set of field experiments were conducted for three consecutive years i.e., 2018-2020, to investigate the role of variations in rainfall, temperature, and relative humidity on the abundance of B. tabaci in okra (Abelmoschus esculentus L. Moench). In the first experiment, the variety Arka Anamika was cultivated twice a year to analyse the incidence of B. tabaci concerning the prevailing weather factors and the overall pooled incidence recorded during the dry and wet season was 1.34 ± 0.51 to 20.03 ± 1.42 and 2.26 ± 1.08 to 18.3 ± 1.96, respectively. Similarly, it was observed that the highest number of B. tabaci catch (19.51 ± 1.64 whiteflies/3 leaves) was recorded in morning hours between 08:31 to 09:30 a.m. The Yellow Vein Mosaic Disease (YVMD) is a devastating disease of okra caused by begomovirus, for which B. tabaci acts as a vector. In another experiment, screening was conducted to check the relative susceptibility of three different varieties viz., ArkaAnamika, PusaSawani, and ParbhaniKranti against B. tabaci (incidence) and YVMD ((Percent Disease Incidence (PDI), Disease Severity Index (DSI), and Area Under the Disease Progress Curve (AUDPC)). The recorded data was normalized by standard transformation and subjected to ANOVA for population dynamics and PDI. Pearson's rank correlation matrix and Principal Component Analysis (PCA) have been used to relate the influences of various weather conditions on distribution and abundance. SPSS and R software were used to create the regression model for predicting the population of B. tabaci. Late sown PusaSawani evolved as a highly susceptible variety in terms of B. tabaci (24.83 ± 6.79 adults/3leaves; mean ± SE; N = 10) as well as YVMD i.e., PDI (38.00 ± 4.95 infected plants/50plants), DSI (71.6-96.4% at 30 DAS) and AUDPC (mean ß-value = 0.76; R2 = 0.96) while early sown Parbhani Kranti least susceptible to both. However, the variety ArkaAnamika was observed as moderately susceptible to B. tabaci and its resultant disease. Moreover, environmental factors were predominantly responsible for regulating the population of insect pests in the field and hence its productivity like rainfall and relative humidity were negative while the temperature was positively correlated with B. tabaci (incidence) and YVMD (AUDPC). The findings are helpful for the farmers to choose need-based IPM strategies than timing-based, which would fit perfectly with the present agro-ecosystems in all ways.


Asunto(s)
Abelmoschus , Hemípteros , Animales , Hemípteros/fisiología , Incidencia , Ecosistema , Tiempo (Meteorología)
8.
Environ Res ; 228: 115838, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024032

RESUMEN

According to the World Health Organization and the Food and Agricultural Organization of the United Nations, T-2 is one of the most harmful food-toxic chemicals, penetrates intact skin. The current study examined the protective benefits of menthol topical treatment on T-2 toxin-induced cutaneous toxicity in mice. Lesions were observed on the skin of the T-2 toxin-treated groups at 72 and 120 h. The T-2 toxin (2.97 mg/kg/bw)-treated group developed skin lesions, skin inflammation, erythema, and necrosis of skin tissue in contrast to the control group. Our findings reveal that topical application of 0.25% and 0.5% MN treated groups resulted in no erythema or inflammation, and normal skin was observed with growing hairs. The 0.5% MN administered group demonstrated an 80% blister and erythema healing effect in in vitro tests. In addition, MN dose-dependently suppressed ROS and lipid peroxidation mediated by the T-2 toxin up to 120%. Histology discoveries and the immunoblotting investigations with the downregulation of i-NOS gene expression confirmed the validity of menthol activity. Further molecular docking experiments of menthol against the i-NOS protein demonstrated stable binding efficacy with conventional hydrogen bond interactions, indicating compelling evidence of menthol's anti-inflammatory effects on the T-2 toxin-induced skin inflammation.


Asunto(s)
Mentol , Toxina T-2 , Ratones , Animales , Mentol/toxicidad , Toxina T-2/toxicidad , Simulación del Acoplamiento Molecular , Piel , Inflamación/inducido químicamente , Inflamación/patología , Alérgenos
9.
Environ Res ; 227: 115690, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36925034

RESUMEN

Only T-2 mycotoxin is emitted as an aerosol and is the most toxic fungal secondary metabolite among mycotoxins. In its clinical condition, the skin is severely irritated and painful due to lesions and alimentary toxic aleukia. Herein, we have assessed various bioactive molecules, viz. kaempferol, menthol, curcumin, and quercetin, against T-2-induced toxicity in HaCaT cells. Menthol offered exceptional protection, protecting 92% of HaCaT cells after exposure to 300 nM T-2 and reducing LDH leakage by up to 42%. Its pre-treatment provided considerable protection against T-2 toxicity, as evidenced by the assessment of mitochondrial membrane potential. Propidium iodide staining revealed a cell cycle halt at the G1, S, and M phases and a significant increase in the sub-G1 percentage in T-2-challenged cells, indicating cell death. However, pre-treatment with menthol promoted cell cycle progression in cells exposed to T-2. Immunoblotting results demonstrated that menthol resulted in a discernible down-regulation of i-NOS expression in T-2-challenged HaCaT cells.


Asunto(s)
Queratinocitos , Micotoxinas , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Células HaCaT , Mentol/toxicidad , Mentol/metabolismo , Micotoxinas/metabolismo , Línea Celular , Apoptosis
10.
Environ Res ; 216(Pt 2): 114475, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244440

RESUMEN

Non-enzymatic glycation of biomolecules results in advanced glycation end products (AGEs), which are responsible for secondary complications in diabetes. Inhibiting methyl glyoxal (MGO) induced advanced glycation end product (AGE) formation is the only way to alleviate diabetic complications. This study aimed to look into the abilities of herbal extract Kigelia africana and K. africana synthesized zinc oxide nanoparticles (ZnONPs) to inhibit the emergence of MG-derived AGEs. The study intended to determine antioxidant and AGE inhibition of the plant extract and ZnONPs. ZnONPs were tested for the efficiency of anti-diabetic activity in streptozotocin-induced diabetic Wister rats. We discovered that the MGO-trapping effects on the prevention of AGE production were mediated by the downregulation of the amplification of MGO-trapping impacts on the hypoglycemic and antihyperlipidemic mechanisms of ZnONPs. According to histological findings, the treatment with ZnONPs also successfully lowers inflammation in the hepatic and renal tissues. Overall, future mechanistic research could establish ZnONPs potential anti-diabetic properties.


Asunto(s)
Diabetes Mellitus , Nanopartículas , Óxido de Zinc , Ratas , Animales , Óxido de Zinc/farmacología , Productos Finales de Glicación Avanzada , Óxido de Magnesio , Ratas Wistar , Piruvaldehído/farmacología
11.
Food Chem Toxicol ; 169: 113411, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087621

RESUMEN

The current finding reports on the development of highly ordered closely packed TiO2 nanotube arrays on Ti substrate via two-step anodization process. The nanotubes developed by second anodization step (TNT2) were encapsulated with Pt nanoflakes using electro-deposition followed by hydrothermal treatment process. The FE-SEM, FTIR, XRD and contact angle measurement, respectively were done to find out the morphological, functional group, phase structural and wettability of the samples. The tube diameter and length were found to be 110-120 and 50-100 nm and 437 and 682, respectively for first (TNT1) and second anodization. The structural order of the TNT has enhanced in the second anodization process. Chronoamperometric results showed that the Pt-TNT2 exhibited enhanced and steady state electro-catalytic activity than Pt-TNT1. Pt-TNT2 nanoflake composite showed near SHP behaviour than the TNT without Pt. The food processing machinery developed using near SHP Pt-TNT2 could be cleaned easily due to its high non-wettability. Hence, Pt-TNT2 can be used for making food processing equipment.


Asunto(s)
Análisis de los Alimentos , Industria de Procesamiento de Alimentos , Nanotubos , Humectabilidad , Nanotubos/química , Titanio/química , Análisis de los Alimentos/instrumentación
12.
Food Chem Toxicol ; 168: 113335, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931245

RESUMEN

This research paper attempt to provide the photocatalytic performance of nitrogen ion (N+) entrenched anodized Ti with hydroxyapatite hybrid nano-sctructure meant for dilapidation of organic contaminant from the environment. The N+ was entrenched at 70 keV with varying doses (1 × 1016, 5 × 1016, 1 × 1017 and 2.5 × 1017 N+/cm2) into anodized Ti surface. Functional groups, phase structure, topographic and morphologic characterizations of the synthesized hybrid nano-sctructure were analyzed using Infra Red Spectroscopy, X-ray diffraction and Microscopic techniques, respectively. Wettability of the specimens was found out using contact angle measurements. The anodized Ti specimens without N+ have exhibited less surface energy than the specimens with N+. Porous shell gets smoothened after the entrenchment of N+. Compared to all the doses of nitrogen implantation, better performance was observed for 5 × 1016 N+/cm2 dose. Moreover, the samples with N+ showed better charge transfer resistance indicating enhanced photocatalytic performance of N+ entrenched titania than other samples.


Asunto(s)
Nanocompuestos , Titanio , Hidroxiapatitas , Nanocompuestos/química , Nitrógeno/química , Titanio/química
13.
Chemosphere ; 306: 135526, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35780990

RESUMEN

The phytoremediation potency of Gossypium hirsutum was explored in this research under the influence of pre-identified metal tolerant Streptomyces tritici D5 in Cr enriched sludge soil using various treatment sets (I to V) in a greenhouse setting. Interestingly, the G. hirsutum remarkable remediate the Cr metal from the Cr enriched sludge soil under diluted (50:50) condition in 90 days of greenhouse experiment. The S. tritici D5 also effectively support the growth and phytoremediation competence of G. hirsutum. This was evidenced by the under the diluted (set III) condition the growth and major biomolecules such as protein, carbohydrate, and chlorophyll content of G. hirsutum were considerably increased in quantity. Hence, the phytoremediation potential of G. hirsutum was effective at soil diluted with fertile and xenobiotics free soil with dilution ratio of 50:50 (set III) and followed by 75:25 (set II) ratio. Thus, under diluted conditions (50:50) G. hirsutum seed coated with S. tritici D5 showed an outstanding phytoremediation process. Therefore, this method can be implemented to the field level study to assess the metal removal prospects of this environmentally friendly method.


Asunto(s)
Cromo , Contaminantes del Suelo , Biodegradación Ambiental , Gossypium , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisis , Streptomyces
14.
Chemosphere ; 304: 135248, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35679978

RESUMEN

This sustainable approach was performed to evaluate the bioremediation potential of cyanide resistant bacterial species on sago industry effluents and assess the possibility of using the yielded biomass as single cell protein (SCP). The predominant cyanide tolerant bacterium enumerated from muddy soil was identified as Streptomyces tritici D5 through 16S rRNA sequencing. The identified S. tritici D5 strains showed excellent resistant and degradation potential at 100 mM concentration of potassium cyanide. Furthermore, the physicochemical properties analysis of sago industry effluents results revealed that the most of the parameters were crossing the permissible limits of Pollution control board of India. The bioremediation process was performed at various temperatures at 25 °C, 35 °C, and 45 °C for a period of 30 days of continuous bioremediation process with the aid of an aerator. Surprisingly, the best organic pollutant reduction was found at 35 °C and 45 °C, with 25 °C following close behind. Remarkably, the dissolved oxygen (DO) level was gradually increased from 2.24 to 12.04 mg L-1 at 35 °C in 30 days of the remediation process. The pH and ammonia were also significantly increased during the bioremediation process in 30 days of treatment. Similarly, at 35 °C of bioremediation process the S. tritici D5 yielded maximum dried biomass (6.9 g L-1) with the total crude protein (SCP) as 4.8 g L-1 (69.56%) in 30 days of growth. These findings stated that S. tritici D5 can treat sago industry effluents and that the biomass produced may be considered SCP after some in-vitro and in-vivo analyses.


Asunto(s)
Cianuros , Streptomyces , Biodegradación Ambiental , Biomasa , Proteínas en la Dieta , ARN Ribosómico 16S , Streptomyces/genética
15.
Chemosphere ; 304: 135246, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35679985

RESUMEN

Aim of this research was to treat the organics enriched Paper and Pulp Industry (PPI) effluents using multi-metal tolerant predominant indigenous bacterial species. In addition, assessing the potential of treated bacterial biomass as a single cell protein (SCP). The multi-metal tolerant Streptomyces tuirus OS1 was enumerated from the Paper and Pulp Industry (PPI) effluents was identified through standard molecular characterization. S. tuirus OS1 proficiently ameliorated organic contaminants in PPI effluent in the in study at 35 °C, 45 °C, and 25 °C. Fortunately, the S. tuirus OS1 considerably increased the dissolved oxygen level in treated PPI effluent in 30 days of bioremediation process. Interestingly, at 35 °C of bioremediation process the S. tuirus OS1 demonstrated increased dried biomass (7.1 g L-1) with the total crude protein (SCP) as 5.3 g L-1 (78.79%) in 30 days of bioremediation process. These findings suggest that S. tuirus OS1 is capable of reducing organic pollutants in PPI effluents and producing biomass with enriched protein content.


Asunto(s)
Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Bacterias/metabolismo , Biodegradación Ambiental , Biomasa , Proteínas en la Dieta , Residuos Industriales/análisis , Papel , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
16.
Food Chem Toxicol ; 166: 113245, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35728723

RESUMEN

The copper nanoparticles (CuNPs) synthesizing potential of Cynodon dactylon aqueous leaf extract and their antibacterial as well as dye degradation potentials were investigated. The synthesized CuNPs was initially characterized by gradual colour change from dark brown to blue in colour and then found absorbance peak at 469 nm. Furthermore, the SEM and DLS analyses showed that biosynthesized CuNPs were spherical in shaped and size ranging from 120 to 129 nm. The FTIR spectrum confirmed the presence of flavonoids, alkaloids, terpenoids, and phenols, which involved in the reduction, capping, and stabilization of CuNPs. This green synthesized CuNPs also demonstrated remarkable antibacterial activity against the bacterial pathogens such as Escherichia coli, Bacillus subtilis and Staphylococcus aureus and Klebsiella pneumoniae. This green synthesized CuNPs exhibited considerable dye degrading potential in the following order as methyl organge > methyl red > Erichrome black T dyes in the presence of sunlight through photocatalytic degradation process. These results conclude that C. dactylon aqueous leaf extract mediated nanoparticles possess remarkable antibacterial and dye degrading potential.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Cobre , Cynodon/metabolismo , Escherichia coli/metabolismo , Extractos Vegetales/farmacología
17.
Environ Res ; 204(Pt A): 111987, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34474035

RESUMEN

This study aims to develop an eco-friendly method for rapidly synthesizing silver nanoparticles (AgNPs) using Asafoetida ethanol extracts and to validate AgNPs synthesis using UV-vis spectroscopy (absorption spectrum), FTIR (functional groups), XRD (crystallinity), FE-SEM (size of the particles) and SEM-EDAX (Purity). Furthermore, to evaluate the anti-proliferative effect of Ag NPs against grown cultured L6 cell lines, studies have shown that AgNPs biosynthesis inhibits cancer cell growth compared to control cell lines. UV-vis absorption verified the existence of Ag NPs, and the spectrum was observed at 480 nm. Functional groups are present in the synthesized Ag NPs were shifted on 528.48 cm-1 confirmed using an FT-IR spectrum. Consequently, anti-cancer efficacy observed the IC50 value of As Ag NPs against L6 cells was 1.0 µg/mL for 48 h. Finally, using a halogen lamp, studies explored the photocatalytic degradation of AgNPs against the methylene blue radioactive dye and achieved a 96 percent degradation rate in 90 min. Asafoetida mediated silver nanoparticles show grater photodegradation for methylene blue dye, which is present in textile industries, when exposed to solar light, and it has a wide range of potential applications in wastewater treatment. As a whole, biosynthesized silver nanoparticles showed excellent cytotoxic, antioxidant, and photocatalytic dye degradation effects.


Asunto(s)
Ferula , Nanopartículas del Metal , Antibacterianos , Extractos Vegetales , Plata , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Colloid Interface Sci ; 584: 770-778, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189317

RESUMEN

In the present study, mixed calcium magnesium oxide (CaMgO2) nanoflakes were synthesized using an ultrasound-assisted co-precipitation method. The physicochemical, structural and functional properties and elemental composition of the nanoflakes had been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), High-resolution transmission electron microscopy (HR-TEM), Fourier Transform Infrared spectroscopy (FTIR), UV-VIS spectroscopy, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Moreover, the photocatalytic actions of the nanoflakes were evaluated by the removal rates of methylene blue (MB) and p-nitrophenol (4-NP) under UV irradiation at room temperature. SEM-EDS studies revealed that the nanoflakes consisted of mixed oxide such as magnesium oxide (MgO) and calcium oxide (CaO) particles. The size of the nanoflakes was found to be in the range of 10-30 nm and the average size was 25 nm as confirmed by HR-TEM analysis. XRD revealed that the standard crystal size was calculated to be 25 nm. The synthesized nanoflakes had a strong photocatalytic activity for methylene blue (MB) and p-nitrophenol (4-NP) degradation in the presence of H2O2 under UV light irradiation within 60 min and 30 min, respectively. Hence, the present study proposes that the CaMgO2 nanoflakes can be employed for the removal of dyes from wastewater.

19.
Curr Pharm Des ; 25(24): 2650-2660, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31298154

RESUMEN

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal , Nanomedicina/tendencias , Plata/farmacología
20.
Colloids Surf B Biointerfaces ; 170: 20-35, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860217

RESUMEN

Over the last few years, nanotechnology is increasingly developing in scientific sector, which has attracted a great deal of interest because of its abundant applications in almost all the areas. In recent times, green nanotechnology is a relative and multidisciplinary field that has emerged as a rapidly developing research area. This is serving as an important technique that spotlight on making the procedure which is clean, safe and in particular environtmentally friendly, in a gap with the currently employed methods such as chemical and physical methods for nanosynthesis. The present review recaps the existing knowledge on various biogenic synthesis methods relying on bacteria, fungi, yeast, algae, viruses and on using biomolecules. The green nanosynthesis refers to the employment of reducing and stabilizing agents from plants and other natural resources, to fabricate nanomaterials. The green synthesis method does not engage the use of exceedingly venomous chemicals or elevated energy inputs during the synthesis. Nanoparticles (NPs) with distinct shapes, sizes and bioactivity can be produced from the variations in the bio-reducing agents employed for nanosynthesis. Hence, this review article summarizes the present information regarding the biological methods which are employed to fabricate greener, safer, and environmentally sustainable nanosynthesis routes. This review mainly highlights the wide-scale fabrication of NPs via green synthesis for biomedical and agricultural applications.


Asunto(s)
Investigación Biomédica , Nanopartículas/química , Nanotecnología , Agricultura , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...