Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Metabolism ; 154: 155818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369056

RESUMEN

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Glucosa/metabolismo , Volumen Sistólico , Miocardio/metabolismo , Oxidación-Reducción , Adenosina Trifosfato/metabolismo , Cetonas/farmacología , Cetonas/metabolismo
2.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193548

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Animales , Ratones , Adenosina Trifosfato/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Cetonas
3.
Sci Rep ; 14(1): 1193, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216627

RESUMEN

High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.


Asunto(s)
Lisina , Miocardio , Ratas , Animales , Miocardio/metabolismo , Lisina/metabolismo , Ratas Sprague-Dawley , Acetilación , Ácidos Grasos/metabolismo , Corazón/fisiología , Isquemia/metabolismo , Glucólisis/fisiología , Glucosa/metabolismo , Oxidación-Reducción , Palmitatos/metabolismo
4.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865313

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Asunto(s)
Acidosis Láctica , Alanina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Ácido Pirúvico , Animales , Ratones , Acidosis Láctica/fisiopatología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Eliminación de Gen , Dieta , Mortalidad Prematura
6.
Cardiovasc Diabetol ; 22(1): 73, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978133

RESUMEN

BACKGROUND: Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS: Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS: Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS: Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Masculino , Ratones , Aldehído Reductasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Modelos Animales de Enfermedad , Distribución Aleatoria
7.
Cardiovasc Drugs Ther ; 37(2): 413-420, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150384

RESUMEN

Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dysfunction in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids (BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.


Asunto(s)
Aminoácidos de Cadena Ramificada , Insuficiencia Cardíaca , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Corazón , Miocardio/metabolismo , Insulina , Insuficiencia Cardíaca/metabolismo , Cetoácidos/metabolismo
8.
Sci Rep ; 12(1): 20551, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446868

RESUMEN

Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury (IRI) but the mechanisms are unknown. Here, we investigate the role of the mitochondrial NAD+-dependent deacetylase, Sirtuin-3 (SIRT3), which has been shown to influence fatty acid oxidation and cardiac outcomes, as a potential mediator of this effect. Fasting was shown to shift metabolism from glucose towards fatty acid oxidation. This change in metabolic fuel substrate utilisation increased myocardial infarct size in wild-type (WT), but not SIRT3 heterozygous knock-out (KO) mice. Further analysis revealed SIRT3 KO mice were better adapted to starvation through an improved cardiac efficiency, thus protecting them from acute myocardial IRI. Mitochondria from SIRT3 KO mice were hyperacetylated compared to WT mice which may regulate key metabolic processes controlling glucose and fatty acid utilisation in the heart. Fasting and the associated metabolic switch to fatty acid respiration worsens outcomes in WT hearts, whilst hearts from SIRT3 KO mice are better adapted to oxidising fatty acids, thereby protecting them from acute myocardial IRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Sirtuina 3 , Animales , Ratones , Ayuno , Ácidos Grasos , Glucosa , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Sirtuina 3/genética
9.
Diabetologia ; 65(3): 411-423, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994805

RESUMEN

Diabetes contributes to the development of heart failure through various metabolic, structural and biochemical changes. The presence of diabetes increases the risk for the development of cardiovascular disease (CVD), and since the introduction of cardiovascular outcome trials to test diabetic drugs, the importance of improving our understanding of the mechanisms by which diabetes increases the risk for heart failure has come under the spotlight. In addition to the coronary vasculature changes that predispose individuals with diabetes to coronary artery disease, diabetes can also lead to cardiac dysfunction independent of ischaemic heart disease. The hyperlipidaemic, hyperglycaemic and insulin resistant state of diabetes contributes to a perturbed energy metabolic milieu, whereby the heart increases its reliance on fatty acids and decreases glucose oxidative rates. In addition to changes in cardiac energy metabolism, extracellular matrix remodelling contributes to the development of cardiac fibrosis, and impairments in calcium handling result in cardiac contractile dysfunction. Lipotoxicity and glucotoxicity also contribute to impairments in vascular function, cardiac contractility, calcium signalling, oxidative stress, cardiac efficiency and lipoapoptosis. Lastly, changes in protein acetylation, protein methylation and DNA methylation contribute to a myriad of gene expression and protein activity changes. Altogether, these changes lead to decreased cardiac efficiency, increased vulnerability to an ischaemic insult and increased risk for the development of heart failure. This review explores the above mechanisms and the way in which they contribute to cardiac dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Oxidación-Reducción
10.
Cardiovasc Res ; 118(3): 686-715, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-33783483

RESUMEN

Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization, and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycaemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycaemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in diabetic patients, collectively termed as 'diabetic cardiomyopathy'. However, the factors that contribute to the development of diabetic cardiomyopathies are not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and post-translational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycaemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycaemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Resistencia a la Insulina , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/epidemiología , Corazón , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/epidemiología , Humanos , Hipoglucemiantes/efectos adversos
14.
Cells ; 10(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34831481

RESUMEN

Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Ácidos Grasos/metabolismo , Miocardio/metabolismo , Índice de Severidad de la Enfermedad , Animales , Humanos , Modelos Biológicos , Oxidación-Reducción
15.
Metabolism ; 124: 154871, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478752

RESUMEN

BACKGROUNDS: Branched chain amino acid (BCAA) oxidation is impaired in cardiac insulin resistance, leading to the accumulation of BCAAs and the first products of BCAA oxidation, the branched chain ketoacids. However, it is not clear whether it is the BCAAs, BCKAs or both that are mediating cardiac insulin resistance. To determine this, we produced mice with a cardiac-specific deletion of BCAA aminotransferase (BCATm-/-), the first enzyme in the BCAA oxidation pathway that is responsible for converting BCAAs to BCKAs. METHODS: Eight-week-old BCATm cardiac specific knockout (BCATm-/-) male mice and their α-MHC (myosin heavy chain) - Cre expressing wild type littermates (WT-Cre+/+) received tamoxifen (50 mg/kg i.p. 6 times over 8 days). At 16-weeks of age, cardiac energy metabolism was assessed in isolated working hearts. RESULTS: BCATm-/- mice have decreased cardiac BCAA oxidation rates, increased cardiac BCAAs and a reduction in cardiac BCKAs. Hearts from BCATm-/- mice showed an increase in insulin stimulation of glucose oxidation and an increase in p-AKT. To determine the impact of reversing these events, we perfused isolated working mice hearts with high levels of BCKAs, which completely abolished insulin-stimulated glucose oxidation rates, an effect associated with decreased p-AKT and inactivation of pyruvate dehydrogenase (PDH), the rate-limiting enzyme in glucose oxidation. CONCLUSION: This implicates the BCKAs, and not BCAAs, as the actual mediators of cardiac insulin resistance and suggests that lowering cardiac BCKAs can be used as a therapeutic strategy to improve insulin sensitivity in the heart.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Glucosa/metabolismo , Corazón/efectos de los fármacos , Insulina/farmacología , Miocardio/metabolismo , Transaminasas/genética , Animales , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transaminasas/metabolismo
16.
Circ Res ; 128(10): 1487-1513, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33983836

RESUMEN

Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/biosíntesis , Aminoácidos de Cadena Ramificada/metabolismo , Comorbilidad , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/genética , Epigénesis Genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis , Insuficiencia Cardíaca/terapia , Humanos , Resistencia a la Insulina , Cuerpos Cetónicos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Obesidad/metabolismo , Oxidación-Reducción
17.
Cardiovasc Res ; 117(4): 1178-1187, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32402081

RESUMEN

AIMS: Ketones have been proposed to be a 'thrifty' fuel for the heart and increasing cardiac ketone oxidation can be cardioprotective. However, it is unclear how much ketone oxidation can contribute to energy production in the heart, nor whether increasing ketone oxidation increases cardiac efficiency. Therefore, our goal was to determine to what extent high levels of the ketone body, ß-hydroxybutyrate (ßOHB), contributes to cardiac energy production, and whether this influences cardiac efficiency. METHODS AND RESULTS: Isolated working mice hearts were aerobically perfused with palmitate (0.8 mM or 1.2 mM), glucose (5 mM) and increasing concentrations of ßOHB (0, 0.6, 2.0 mM). Subsequently, oxidation of these substrates, cardiac function, and cardiac efficiency were assessed. Increasing ßOHB concentrations increased myocardial ketone oxidation rates without affecting glucose or fatty acid oxidation rates where normal physiological levels of glucose (5 mM) and fatty acid (0.8 mM) are present. Notably, ketones became the major fuel source for the heart at 2.0 mM ßOHB (at both low or high fatty acid concentrations), with the elevated ketone oxidation rates markedly increasing tricarboxylic acid (TCA) cycle activity, producing a large amount of reducing equivalents and finally, increasing myocardial oxygen consumption. However, the marked increase in ketone oxidation at high concentrations of ßOHB was not accompanied by an increase in cardiac work, suggesting that a mismatch between excess reduced equivalents production from ketone oxidation and cardiac adenosine triphosphate production. Consequently, cardiac efficiency decreased when the heart was exposed to higher ketone levels. CONCLUSIONS: We demonstrate that while ketones can become the major fuel source for the heart, they do not increase cardiac efficiency, which also underscores the importance of recognizing ketones as a major fuel source for the heart in times of starvation, consumption of a ketogenic diet or poorly controlled diabetes.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Contracción Miocárdica , Miocardio/metabolismo , Consumo de Oxígeno , Animales , Glucosa/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción , Palmitatos/metabolismo
18.
Cardiovasc Diabetol ; 19(1): 207, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287820

RESUMEN

BACKGROUND: Glucose oxidation is a major contributor to myocardial energy production and its contribution is orchestrated by insulin. While insulin can increase glucose oxidation indirectly by enhancing glucose uptake and glycolysis, it also directly stimulates mitochondrial glucose oxidation, independent of increasing glucose uptake or glycolysis, through activating mitochondrial pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. However, how insulin directly stimulates PDH is not known. To determine this, we characterized the impacts of modifying mitochondrial insulin signaling kinases, namely protein kinase B (Akt), protein kinase C-delta (PKC-δ) and glycogen synthase kinase-3 beta (GSK-3ß), on the direct insulin stimulation of glucose oxidation. METHODS: We employed an isolated working mouse heart model to measure the effect of insulin on cardiac glycolysis, glucose oxidation and fatty acid oxidation and how that could be affected when mitochondrial Akt, PKC-δ or GSK-3ß is disturbed using pharmacological modulators. We also used differential centrifugation to isolate mitochondrial and cytosol fraction to examine the activity of Akt, PKC-δ and GSK-3ß between these fractions. Data were analyzed using unpaired t-test and two-way ANOVA. RESULTS: Here we show that insulin-stimulated phosphorylation of mitochondrial Akt is a prerequisite for transducing insulin's direct stimulation of glucose oxidation. Inhibition of mitochondrial Akt completely abolishes insulin-stimulated glucose oxidation, independent of glucose uptake or glycolysis. We also show a novel role of mitochondrial PKC-δ in modulating mitochondrial glucose oxidation. Inhibition of mitochondrial PKC-δ mimics insulin stimulation of glucose oxidation and mitochondrial Akt. We also demonstrate that inhibition of mitochondrial GSK3ß phosphorylation does not influence insulin-stimulated glucose oxidation. CONCLUSION: We identify, for the first time, insulin-stimulated mitochondrial Akt as a prerequisite transmitter of the insulin signal that directly stimulates cardiac glucose oxidation. These novel findings suggest that targeting mitochondrial Akt is a potential therapeutic approach to enhance cardiac insulin sensitivity in condition such as heart failure, diabetes and obesity.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosforilación , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158813, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920139

RESUMEN

The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a "thrifty fuel", increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Cuerpos Cetónicos/metabolismo , Animales , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Oxidación-Reducción/efectos de los fármacos
20.
J Card Fail ; 26(11): 998-1005, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32442517

RESUMEN

Ketone bodies can become a major source of adenosine triphosphate production during stress to maintain bioenergetic homeostasis in the brain, heart, and skeletal muscles. In the normal heart, ketone bodies contribute from 10% to 15% of the cardiac adenosine triphosphate production, although their contribution during pathologic stress is still not well-characterized and currently represents an exciting area of cardiovascular research. This review focuses on the mechanisms that regulate circulating ketone levels under physiologic and pathologic conditions and how this impacts cardiac ketone metabolism. We also review the current understanding of the role of augmented ketone metabolism as an adaptive response in different types and stages of heart failure. This analysis includes the emerging experimental and clinical evidence of the potential favorable effects of boosting ketone metabolism in the failing heart and the possible mechanisms of action through which these interventions may mediate their cardioprotective effects. We also critically appraise the emerging data from animal and human studies which characterize the role of ketones in mediating the cardioprotection established by the new class of antidiabetic drugs, namely sodium-glucose co-transporter inhibitors.


Asunto(s)
Insuficiencia Cardíaca , Animales , Metabolismo Energético , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Cuerpos Cetónicos , Cetonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...