Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Stem Cell Rev Rep ; 18(8): 3050-3065, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35809166

RESUMEN

Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.


Asunto(s)
Duramadre , Transcriptoma , Humanos , Animales , Ratones , Duramadre/metabolismo , Duramadre/patología , Diferenciación Celular/genética , Fibroblastos , Células Cultivadas
2.
Neurology ; 96(18): e2296-e2312, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827960

RESUMEN

OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.


Asunto(s)
Progresión de la Enfermedad , Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Proteínas de Neurofilamentos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Adulto Joven
3.
Brain ; 144(7): 2186-2198, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33693619

RESUMEN

Co-pathologies play an important role in the expression of the Alzheimer's disease clinical phenotype and may influence treatment efficacy. Early-onset Alzheimer's disease, defined as manifesting before age 65, is viewed as a relatively pure form of Alzheimer's disease with a more homogeneous neuropathological substrate. We sought to compare the frequency of common neuropathological diagnoses in a consecutive autopsy series of 96 patients with early-onset Alzheimer's disease (median age of onset = 55 years, 44 females) and 48 with late-onset Alzheimer's disease (median age of onset = 73 years, 14 females). The UCSF Neurodegenerative Disease Brain Bank database was reviewed to identify patients with a primary pathological diagnosis of Alzheimer's disease. Prevalence and stage of Lewy body disease, limbic age-related TDP-43 encephalopathy (LATE), argyrophilic grain disease, hippocampal sclerosis, cerebral amyloid angiopathy, and vascular brain injury were compared between the two cohorts. We found at least one non-Alzheimer's disease pathological diagnosis in 98% of patients with early-onset Alzheimer's disease (versus 100% of late onset), and the number of comorbid diagnoses per patient was lower in early-onset than in late-onset Alzheimer's disease (median = 2 versus 3, Mann-Whitney Z = 3.00, P = 0.002). Lewy body disease and cerebral amyloid angiopathy were common in both early and late onset Alzheimer's disease (cerebral amyloid angiopathy: 86% versus 79%, Fisher exact P = 0.33; Lewy body disease: 49% versus 42%, P = 0.48, respectively), although amygdala-predominant Lewy body disease was more common in early than late onset Alzheimer's disease (22% versus 6%, P = 0.02). In contrast, LATE (35% versus 8%, P < 0.001), hippocampal sclerosis (15% versus 3%, P = 0.02), argyrophilic grain disease (58% versus 41%, P = 0.052), and vascular brain injury (65% versus 39%, P = 0.004) were more common in late than in early onset Alzheimer's disease, respectively. The number of co-pathologies predicted worse cognitive performance at the time of death on Mini-Mental State Examination [1.4 points/pathology (95% confidence interval, CI -2.5 to -0.2) and Clinical Dementia Rating-Sum of Boxes (1.15 point/pathology, 95% CI 0.45 to 1.84)], across early and late onset cohorts. The effect of sex on the number of co-pathologies was not significant (P = 0.17). Prevalence of at least one APOE ε4 allele was similar across the two cohorts (52% and 54%) and was associated with a greater number of co-pathologies (+0.40, 95% CI 0.01 to 0.79, P = 0.047), independent of age of symptom onset, sex, and disease duration. Females showed higher density of neurofibrillary tangles compared to males, controlling for age of onset, APOE ε4, and disease duration. Our findings suggest that non-Alzheimer's disease pathological diagnoses play an important role in the clinical phenotype of early onset Alzheimer's disease with potentially significant implications for clinical practice and clinical trials design.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Encefalopatías/epidemiología , Edad de Inicio , Anciano , Enfermedad de Alzheimer/patología , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Ann Clin Transl Neurol ; 8(1): 95-110, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247623

RESUMEN

OBJECTIVE: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. METHODS: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. RESULTS: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. INTERPRETATION: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Proteínas tau/genética , Adulto , Anciano , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación
5.
Ann Clin Transl Neurol ; 7(12): 2433-2449, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197149

RESUMEN

OBJECTIVE: The goal of this study was to investigate the effect of progranulin insufficiency on extracellular vesicles (EVs), a heterogeneous population of vesicles that may contribute to progression of neurodegenerative disease. Loss-of-function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD), and brains from GRN carriers with FTD (FTD-GRN) exhibit signs of lysosomal dysfunction. Lysosomal dysfunction may induce compensatory increases in secretion of exosomes, EVs secreted from the endolysosomal system, so we hypothesized that progranulin insufficiency would increase EV levels in the brain. METHODS: We analyzed levels and protein contents of brain EVs from Grn-/- mice, which model the lysosomal abnormalities of FTD-GRN patients. We then measured brain EVs in FTD-GRN patients. To assess the relationship of EVs with symptomatic disease, we measured plasma EVs in presymptomatic and symptomatic GRN mutation carriers. RESULTS: Grn-/- mice had elevated brain EV levels and altered EV protein contents relative to wild-type mice. These changes were age-dependent, occurring only after the emergence of pathology in Grn-/- mice. FTD-GRN patients (n = 13) had elevated brain EV levels relative to controls (n = 5). Symptomatic (n = 12), but not presymptomatic (n = 7), GRN carriers had elevated plasma EV levels relative to controls (n = 8). INTERPRETATION: These data show that symptomatic FTD-GRN patients have elevated levels of brain and plasma EVs, and that this effect is modeled in the brain of Grn-/- mice after the onset of pathology. This increase in EVs could influence FTD disease progression, and provides further support for EVs as potential FTD biomarkers.


Asunto(s)
Vesículas Extracelulares/metabolismo , Lóbulo Frontal/metabolismo , Demencia Frontotemporal/metabolismo , Progranulinas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Progresión de la Enfermedad , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Progranulinas/deficiencia , Progranulinas/genética , Proteómica , Método Simple Ciego
6.
Am J Hum Genet ; 106(5): 632-645, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32330418

RESUMEN

We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Mutación con Pérdida de Función/genética , Enfermedades Neurodegenerativas/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Animales , Cognición , Dioxigenasas , Femenino , Demencia Frontotemporal/genética , Humanos , Masculino , Ratones
7.
Nat Med ; 26(3): 387-397, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123386

RESUMEN

With the potential development of new disease-modifying Alzheimer's disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid ß positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid ß-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/diagnóstico , Proteínas tau/sangre , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Amiloide/metabolismo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cognición , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Neurofilamentos/sangre , Fosforilación , Tomografía de Emisión de Positrones , Índice de Severidad de la Enfermedad , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
8.
Alzheimer Dis Assoc Disord ; 34(3): 244-247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31972607

RESUMEN

OBJECTIVE: Recent studies have suggested that diminished Ccr5 functioning has an effect on synaptic plasticity and hippocampal memory in mouse models. CCR5-delta32, a 32-bp frameshift deletion in human CCR5 encoding a nonfunctional receptor, has been reported to have a protective effect against human immunodeficiency virus infection but its role as a modifier of neurodegenerative disease has been minimally explored. We investigated whether the CCR5-delta32 polymorphism could have an effect in the context of human neurodegenerative diseases. METHODS: We examined the frequency of the CCR5-delta32 polymorphism in a large and well-characterized cohort including 1425 patients with neurodegenerative dementias and 2032 controls. RESULTS: We did not observe a significant association between the CCR5-delta32 polymorphism and any of the neurodegenerative diseases screened in this study. However, we observed an earlier age of onset among neurodegenerative disease patients carrying the CCR5-delta32 allele. CONCLUSIONS: Although our findings were inconclusive, the earlier age of onset observed among neurodegenerative disease patients carrying the CCR5-delta32 allele suggests that the deletion may have a detrimental effect in the context of neurodegeneration.


Asunto(s)
Edad de Inicio , Enfermedades Neurodegenerativas/genética , Polimorfismo Genético , Receptores CCR5/genética , Adulto , Alelos , California , Estudios de Cohortes , Humanos , Persona de Mediana Edad
9.
Alzheimers Dement ; 16(1): 49-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31784375

RESUMEN

INTRODUCTION: The Advancing Research and Treatment in Frontotemporal Lobar Degeneration and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects longitudinal studies were designed to describe the natural history of familial-frontotemporal lobar degeneration due to autosomal dominant mutations. METHODS: We examined cognitive performance, behavioral ratings, and brain volumes from the first time point in 320 MAPT, GRN, and C9orf72 family members, including 102 non-mutation carriers, 103 asymptomatic carriers, 43 mildly/questionably symptomatic carriers, and 72 carriers with dementia. RESULTS: Asymptomatic carriers showed similar scores on all clinical measures compared with noncarriers but reduced frontal and temporal volumes. Those with mild/questionable impairment showed decreased verbal recall, fluency, and Trail Making Test performance and impaired mood and self-monitoring. Dementia was associated with impairment in all measures. All MAPT carriers with dementia showed temporal atrophy, but otherwise, there was no single cognitive test or brain region that was abnormal in all subjects. DISCUSSION: Imaging changes appear to precede clinical changes in familial-frontotemporal lobar degeneration, but specific early clinical and imaging changes vary across individuals.


Asunto(s)
Atrofia/patología , Degeneración Lobar Frontotemporal , Predisposición Genética a la Enfermedad , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Pruebas Neuropsicológicas/estadística & datos numéricos , Proteína C9orf72/genética , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Progranulinas/genética , Lóbulo Temporal/patología , Proteínas tau/genética
10.
Neurobiol Aging ; 83: 54-62, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31585367

RESUMEN

Our aim was to investigate the patterns and trajectories of white matter (WM) diffusion abnormalities in microtubule-associated protein tau (MAPT) mutations carriers. We studied 22 MAPT mutation carriers (12 asymptomatic, 10 symptomatic) and 20 noncarriers from 8 families, who underwent diffusion tensor imaging (DTI) and a subset (10 asymptomatic, 6 symptomatic MAPT mutation carriers, and 10 noncarriers) were followed annually (median = 4 years). Cross-sectional and longitudinal changes in mean diffusivity (MD) and fractional anisotropy were analyzed. Asymptomatic MAPT mutation carriers had higher MD in entorhinal WM, which propagated to the limbic tracts and frontotemporal projections in the symptomatic stage compared with noncarriers. Reduced fractional anisotropy and increased MD in the entorhinal WM were associated with the proximity to estimated and actual age of symptom onset. The annualized change of entorhinal MD on serial DTI was accelerated in MAPT mutation carriers compared with noncarriers. Entorhinal WM diffusion abnormalities precede the symptom onset and track with disease progression in MAPT mutation carriers. Our cross-sectional and longitudinal data showed a potential clinical utility for DTI to track neurodegenerative disease progression for MAPT mutation carriers in clinical trials.


Asunto(s)
Demencia Frontotemporal/genética , Mutación/genética , Sustancia Blanca/patología , Proteínas tau/genética , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Femenino , Demencia Frontotemporal/patología , Sustancia Gris/patología , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Pruebas Neuropsicológicas
11.
Neuron ; 104(5): 856-868.e5, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31623919

RESUMEN

Neurodegenerative diseases appear to progress by spreading via brain connections. Here we evaluated this transneuronal degeneration hypothesis by attempting to predict future atrophy in a longitudinal cohort of patients with behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA). We determined patient-specific "epicenters" at baseline, located each patient's epicenters in the healthy functional connectome, and derived two region-wise graph theoretical metrics to predict future atrophy: (1) shortest path length to the epicenter and (2) nodal hazard, the cumulative atrophy of a region's first-degree neighbors. Using these predictors and baseline atrophy, we could accurately predict longitudinal atrophy in most patients. The regions most vulnerable to subsequent atrophy were functionally connected to the epicenter and had intermediate levels of baseline atrophy. These findings provide novel, longitudinal evidence that neurodegeneration progresses along connectional pathways and, further developed, could lead to network-based clinical tools for prognostication and disease monitoring.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Modelos Neurológicos , Degeneración Nerviosa/patología , Vías Nerviosas/patología , Anciano , Atrofia/patología , Atrofia/fisiopatología , Encéfalo/fisiopatología , Femenino , Demencia Frontotemporal/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología
12.
Alzheimer Dis Assoc Disord ; 33(4): 327-330, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513029

RESUMEN

OBJECTIVE: A rare variant in TREM2 (p.R47H, rs75932628) has been consistently reported to increase the risk for Alzheimer disease (AD), while mixed evidence has been reported for association of the variant with other neurodegenerative diseases. Here, we investigated the frequency of the R47H variant in a diverse and well-characterized multicenter neurodegenerative disease cohort. METHODS: We examined the frequency of the R47H variant in a diverse neurodegenerative disease cohort, including a total of 3058 patients clinically diagnosed with AD, frontotemporal dementia spectrum syndromes, mild cognitive impairment, progressive supranuclear palsy syndrome, corticobasal syndrome, or amyotrophic lateral sclerosis and 5089 control subjects. RESULTS: We observed a significant association between the R47H variant and AD, while no association was observed with any other neurodegenerative disease included in this study. CONCLUSIONS: Our results support the consensus that the R47H variant is significantly associated with AD. However, we did not find evidence for association of the R47H variant with other neurodegenerative diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Glicoproteínas de Membrana/genética , Enfermedades Neurodegenerativas/genética , Receptores Inmunológicos/genética , Anciano , Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Disfunción Cognitiva/genética , Estudios de Cohortes , Femenino , Demencia Frontotemporal/genética , Humanos , Internacionalidad , Masculino
13.
Neuroimage Clin ; 22: 101751, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30921613

RESUMEN

Mutations in progranulin (GRN) cause heterogeneous clinical syndromes, including behavioral variant frontotemporal dementia (bvFTD), primary progressive aphasia (PPA), corticobasal syndrome (CBS) and Alzheimer-type dementia (AD-type dementia). Human studies have shown that presymptomatic GRN carriers feature reduced connectivity in the salience network, a system targeted in bvFTD. Mice with homozygous deletion of GRN, in contrast, show thalamo-cortical hypersynchrony due to aberrant pruning of inhibitory synapses onto thalamo-cortical projection neurons. No studies have systematically explored the intrinsic connectivity networks (ICNs) targeted by the four GRN-associated clinical syndromes, or have forged clear links between human and mouse model findings. We compared 17 preclinical GRN carriers (14 "presymptomatic" clinically normal and three "prodromal" with mild cognitive symptoms) to healthy controls to assess for differences in cognitive testing and gray matter volume. Using task-free fMRI, we assessed connectivity in the salience network, a non-fluent variant primary progressive aphasia network (nfvPPA), the perirolandic network (CBS), and the default mode network (AD-type dementia). GRN carriers and controls showed similar performance on cognitive testing. Although carriers showed little evidence of brain atrophy, markedly enhanced connectivity emerged in all four networks, and thalamo-cortical hyperconnectivity stood out as a unifying feature. Voxelwise assessment of whole brain degree centrality, an unbiased graph theoretical connectivity metric, confirmed thalamic hyperconnectivity. These results show that human GRN disease and the prevailing GRN mouse model share a thalamo-cortical network hypersynchrony phenotype. Longitudinal studies will determine whether this network physiology represents a compensatory response as carriers approach symptom onset, or an early and sustained preclinical manifestation of lifelong progranulin haploinsufficiency.


Asunto(s)
Corteza Cerebral/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma/métodos , Demencia Frontotemporal/fisiopatología , Red Nerviosa/fisiopatología , Síntomas Prodrómicos , Progranulinas/genética , Tálamo/fisiopatología , Adulto , Anciano , Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Tálamo/diagnóstico por imagen
14.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739198

RESUMEN

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteinopatías TDP-43/genética , Anciano , Expansión de las Repeticiones de ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Lóbulo Frontal/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/inmunología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA-DQ/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación con Pérdida de Función , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio/genética , Progranulinas/genética , Progranulinas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas/genética , Proteínas/fisiología , ARN Mensajero/biosíntesis , Factores de Riesgo , Análisis de Secuencia de ARN , Sociedades Científicas , Proteinopatías TDP-43/inmunología , Población Blanca/genética
15.
Alzheimers Dement ; 15(4): 553-560, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30599136

RESUMEN

INTRODUCTION: Primary progressive aphasia (PPA) is a neurological syndrome, associated with both frontotemporal dementia and Alzheimer's disease, in which progressive language impairment emerges as the most salient clinical feature during the initial stages of disease. METHODS: We screened the main genes associated with Alzheimer's disease and frontotemporal dementia for pathogenic and risk variants in a cohort of 403 PPA cases. RESULTS: In this case series study, 14 (3.5%) cases carried (likely) pathogenic variants: four C9orf72 expansions, nine GRN, and one TARDBP mutation. Rare risk variants, TREM2 R47H and MAPT A152T, were associated with a three- to seven-fold increase in risk for PPA. DISCUSSION: Our results show that while pathogenic variants within the most common dementia genes were rarely associated with PPA, these were found almost exclusively in GRN and C9orf72, suggesting that PPA is more TDP43- than tau-related in our series. This is consistent with the finding that PPA frequency in dominantly inherited dementias is the highest in kindreds with GRN variants.


Asunto(s)
Afasia Progresiva Primaria/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Progranulinas/genética , Anciano , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética
16.
Ann Clin Transl Neurol ; 5(5): 616-629, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29761124

RESUMEN

OBJECTIVE: Changes in progranulin (GRN) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). METHODS: Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's (n = 186), MCI (n = 118), and control (n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. RESULTS: We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males (P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort (F2,505 = 10.41, P = 3.72*10-5). This finding was replicated in the AddNeuroMed (F2,271 = 17.9, P = 4.83*10-8) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression (P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis (P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. INTERPRETATION: Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.

17.
Ann Clin Transl Neurol ; 5(5): 583-597, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29761121

RESUMEN

OBJECTIVE: To evaluate poly(GP), a dipeptide repeat protein, and neurofilament light chain (NfL) as biomarkers in presymptomatic C9orf72 repeat expansion carriers and patients with C9orf72-associated frontotemporal dementia. Additionally, to investigate the relationship of poly(GP) with indicators of neurodegeneration as measured by NfL and grey matter volume. METHODS: We measured poly(GP) and NfL levels in cerebrospinal fluid (CSF) from 25 presymptomatic C9orf72 expansion carriers, 64 symptomatic expansion carriers with dementia, and 12 noncarriers. We explored associations with grey matter volumes using region of interest and voxel-wise analyses. RESULTS: Poly(GP) was present in C9orf72 expansion carriers and absent in noncarriers (specificity 100%, sensitivity 97%). Presymptomatic carriers had lower poly(GP) levels than symptomatic carriers. NfL levels were higher in symptomatic carriers than in presymptomatic carriers and healthy noncarriers. NfL was highest in patients with concomitant motor neuron disease, and correlated with disease severity and survival. Associations between poly(GP) levels and small grey matter regions emerged but did not survive multiple comparison correction, while higher NfL levels were associated with atrophy in frontotemporoparietal cortices and the thalamus. INTERPRETATION: This study of C9orf72 expansion carriers reveals that: (1) poly(GP) levels discriminate presymptomatic and symptomatic expansion carriers from noncarriers, but are not associated with indicators of neurodegeneration; and (2) NfL levels are associated with grey matter atrophy, disease severity, and shorter survival. Together, poly(GP) and NfL show promise as complementary biomarkers for clinical trials for C9orf72-associated frontotemporal dementia, with poly(GP) as a potential marker for target engagement and NfL as a marker of disease activity and progression.

18.
Proc Natl Acad Sci U S A ; 115(12): E2849-E2858, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29511098

RESUMEN

Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation.


Asunto(s)
Demencia Frontotemporal/etiología , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Demencia Frontotemporal/genética , Técnicas de Sustitución del Gen , Granulinas , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/farmacología , Progranulinas , ARN Mensajero
20.
Neuroimage Clin ; 14: 286-297, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337409

RESUMEN

Hexanucleotide repeat expansions in C9ORF72 are the most common known genetic cause of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis. Previous work has shown that patients with behavioral variant frontotemporal dementia due to C9ORF72 show salience and sensorimotor network disruptions comparable to those seen in sporadic behavioral variant frontotemporal dementia, but it remains unknown how early in the lifespan these and other changes in brain structure and function arise. To gain insights into this question, we compared 15 presymptomatic carriers (age 43.7 ± 10.2 years, nine females) to matched healthy controls. We used voxel-based morphometry to assess gray matter, diffusion tensor imaging to interrogate white matter tracts, and task-free functional MRI to probe the salience, sensorimotor, default mode, and medial pulvinar thalamus-seeded networks. We further used a retrospective chart review to ascertain psychiatric histories in carriers and their non-carrier family members. Carriers showed normal cognition and behavior despite gray matter volume and brain connectivity deficits that were apparent as early as the fourth decade of life. Gray matter volume deficits were topographically similar though less severe than those in patients with behavioral variant frontotemporal dementia due to C9ORF72, with major foci in cingulate, insula, thalamus, and striatum. Reduced white matter integrity was found in the corpus callosum, cingulum bundles, corticospinal tracts, uncinate fasciculi and inferior longitudinal fasciculi. Intrinsic connectivity deficits were detected in all four networks but most prominent in salience and medial pulvinar thalamus-seeded networks. Carrier and control groups showed comparable relationships between imaging metrics and age, suggesting that deficits emerge during early adulthood. Carriers and non-carrier family members had comparable lifetime histories of psychiatric symptoms. Taken together, the findings suggest that presymptomatic C9ORF72 expansion carriers exhibit functionally compensated brain volume and connectivity deficits that are similar, though less severe, to those reported during the symptomatic phase. The early adulthood emergence of these deficits suggests that they represent aberrant network patterning during development, an early neurodegeneration prodrome, or both.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Proteínas/genética , Adulto , Enfermedades Asintomáticas , Encéfalo/diagnóstico por imagen , Proteína C9orf72 , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Pruebas Neuropsicológicas , Oxígeno/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...