Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
2.
Phys Rev Lett ; 131(19): 191001, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000434

RESUMEN

Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.

3.
Science ; 382(6673): 903-907, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995237

RESUMEN

Cosmic rays are energetic charged particles from extraterrestrial sources, with the highest-energy events thought to come from extragalactic sources. Their arrival is infrequent, so detection requires instruments with large collecting areas. In this work, we report the detection of an extremely energetic particle recorded by the surface detector array of the Telescope Array experiment. We calculate the particle's energy as [Formula: see text] (~40 joules). Its arrival direction points back to a void in the large-scale structure of the Universe. Possible explanations include a large deflection by the foreground magnetic field, an unidentified source in the local extragalactic neighborhood, or an incomplete knowledge of particle physics.

5.
Phys Rev Lett ; 130(21): 211001, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295105

RESUMEN

We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.


Asunto(s)
Radiación Cósmica , Vuelo Espacial , Telescopios , Protones , Electrones
6.
Phys Rev Lett ; 130(17): 171002, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172251

RESUMEN

We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

7.
Ann Oncol ; 34(4): 377-388, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36709038

RESUMEN

BACKGROUND: We evaluated whether tissue tumor mutational burden (tTMB) and STK11, KEAP1, and KRAS mutations have clinical utility as biomarkers for pembrolizumab monotherapy versus platinum-based chemotherapy in patients with programmed death ligand 1 (PD-L1)-positive (tumor proportion score ≥1%) advanced/metastatic non-small-cell lung cancer (NSCLC) without EGFR/ALK alterations in the phase III KEYNOTE-042 trial. PATIENTS AND METHODS: This retrospective exploratory analysis assessed prevalence of tTMB and STK11, KEAP1, and KRAS mutations determined by whole-exome sequencing of tumor tissue and matched normal DNA and their associations with outcomes in KEYNOTE-042. Clinical utility of tTMB was assessed using a prespecified cut point of 175 mutations/exome. RESULTS: Of 793 patients, 345 (43.5%) had tTMB ≥175 mutations/exome and 448 (56.5%) had tTMB <175 mutations/exome. No association was observed between PD-L1 expression and tTMB. Continuous tTMB score was associated with improved overall survival (OS) and progression-free survival among patients receiving pembrolizumab (Wald test, one-sided P < 0.001) but not those receiving chemotherapy (Wald test, two-sided P > 0.05). tTMB ≥175 mutations/exome was associated with improved outcomes for pembrolizumab versus chemotherapy, whereas tTMB <175 mutations/exome was not {OS: hazard ratio, 0.62 [95% confidence interval (CI) 0.48-0.80] and 1.09 (95% CI 0.88-1.36); progression-free survival: 0.75 (0.59-0.95) and 1.27 (1.04-1.55), respectively}. Improved OS [hazard ratio (95% CI)] for pembrolizumab versus chemotherapy was observed regardless of STK11 [STK11 mutant (n = 33): 0.37 (0.16-0.86), STK11 wild-type (n = 396): 0.83 (0.65-1.05)]; KEAP1 [KEAP1 mutant (n = 64): 0.75 (0.42-1.35), KEAP1 wild-type (n = 365): 0.78 (0.61-0.99)], or KRAS [KRAS mutant (n = 69): 0.42 (0.22-0.81); KRAS wild-type (n = 232): 0.86 (0.63-1.18)] mutation status. CONCLUSION: tTMB with a cut point of ≥175 mutations/exome is a potential predictive biomarker for pembrolizumab monotherapy for advanced/metastatic PD-L1 tumor proportion score ≥1% NSCLC. Pembrolizumab is a standard first-line treatment in this setting regardless of STK11, KEAP1, or KRAS mutation status.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Estudios Retrospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
8.
Phys Rev Lett ; 129(10): 101102, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112450

RESUMEN

A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.

10.
Phys Rev Lett ; 128(13): 131103, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35426700

RESUMEN

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

12.
Phys Rev Lett ; 129(25): 251103, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36608255

RESUMEN

We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25

13.
Phys Rev Lett ; 126(24): 241101, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213922

RESUMEN

The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

14.
Phys Rev Lett ; 127(3): 031102, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328784

RESUMEN

We report observations of gamma-ray emissions with energies in the 100-TeV energy region from the Cygnus region in our Galaxy. Two sources are significantly detected in the directions of the Cygnus OB1 and OB2 associations. Based on their positional coincidences, we associate one with a pulsar PSR J2032+4127 and the other mainly with a pulsar wind nebula PWN G75.2+0.1, with the pulsar moving away from its original birthplace situated around the centroid of the observed gamma-ray emission. This work would stimulate further studies of particle acceleration mechanisms at these gamma-ray sources.

16.
Phys Rev Lett ; 126(14): 141101, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891464

RESUMEN

We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between 100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart from known TeV gamma-ray sources and compatible with expectations from the hadronic emission scenario in which gamma rays originate from the decay of π^{0}'s produced through the interaction of protons with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond PeV energies in our Galaxy and spread over the Galactic disk.

18.
Phys Rev Lett ; 124(25): 252501, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32639790

RESUMEN

Transverse single-spin asymmetries of very forward neutral pions generated in polarized p+p collisions allow us to understand the production mechanism in terms of perturbative and nonperturbative strong interactions. During 2017, the RHICf Collaboration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized p+p collisions at sqrt[s]=510 GeV. The large nonzero asymmetries increasing both in longitudinal momentum fraction x_{F} and transverse momentum p_{T} have been observed at low transverse momentum p_{T}<1 GeV/c for the first time, at this collision energy. The asymmetries show an approximate x_{F} scaling in the p_{T} region where nonperturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.

19.
Phys Rev Lett ; 125(25): 251102, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416351

RESUMEN

In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.

20.
Phys Rev Lett ; 123(5): 051101, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491288

RESUMEN

We report on the highest energy photons from the Crab Nebula observed by the Tibet air shower array with the underground water-Cherenkov-type muon detector array. Based on the criterion of a muon number measured in an air shower, we successfully suppress 99.92% of the cosmic-ray background events with energies E>100 TeV. As a result, we observed 24 photonlike events with E>100 TeV against 5.5 background events, which corresponds to a 5.6σ statistical significance. This is the first detection of photons with E>100 TeV from an astrophysical source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...