Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 322, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228586

RESUMEN

Toward drastic enhancement of thermoelectric power factor, quantum confinement effect proposed by Hicks and Dresselhaus has intrigued a lot of researchers. There has been much effort to increase power factor using step-like density-of-states in two-dimensional electron gas (2DEG) system. Here, we pay attention to another effect caused by confining electrons spatially along one-dimensional direction: multiplied 2DEG effect, where multiple discrete subbands contribute to electrical conduction, resulting in high Seebeck coefficient. The power factor of multiple 2DEG in GaAs reaches the ultrahigh value of ~100 µWcm-1 K-2 at 300 K. We evaluate the enhancement rate defined as power factor of 2DEG divided by that of three-dimensional bulk. The experimental enhancement rate relative to the theoretical one of conventional 2DEG reaches anomalously high (~4) in multiple 2DEG compared with those in various conventional 2DEG systems (~1). This proposed methodology for power factor enhancement opens the next era of thermoelectric research.

2.
Nat Nanotechnol ; 17(1): 21-26, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750559

RESUMEN

The size tunability and chemical versatility of nanostructures enable electron sources of high brightness and temporal coherence, both of which are important characteristics for high-resolution electron microscopy1-3. Despite intensive research efforts in the field, so far, only conventional field emitters based on a bulk tungsten (W) needle have been able to yield atomic-resolution images. The absence of viable alternatives is in part caused by insufficient fabrication precision for nanostructured sources, which require an alignment precision of subdegree angular deviation of a nanometre-sized emission area with the macroscopic emitter axis4. To overcome this challenge, in this work we micro-engineered a LaB6 nanowire-based electron source that emitted a highly collimated electron beam with good lateral and angular alignment. We integrated a passive collimator structure into the support needle tip for the LaB6 nanowire emitter. The collimator formed an axially symmetric electric field around the emission tip of the nanowire. Furthermore, by means of micromanipulation, the support needle tip was bent to align the emitted electron beam with the emitter axis. After installation in an aberration-corrected transmission electron microscope, we characterized the performance of the electron source in a vacuum of 10-8 Pa and achieved atomic resolution in both broad-beam and probe-forming modes at 60 kV beam energy. The natural, unmonochromated 0.20 eV electron energy loss spectroscopy resolution, 20% probe-forming efficiency and 0.4% probe current peak-to-peak noise ratio paired with modest vacuum requirements make the LaB6 nanowire-based electron source an attractive alternative to the standard W-based sources for low-cost electron beam instruments.

3.
Opt Express ; 29(1): 59-69, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362101

RESUMEN

Complex lightwave manipulation such as broadband absorption has been realized with metasurfaces based on laterally arranged metal-dielectric-metal cavities with different geometries. However, application of these metasurfaces for optoelectronic devices by incorporating functional dielectrics remains challenging. Here, we integrate a quantum well infrared photodetector (QWIP) with a metasurface made of a patchwork of square cavities with different dimensions arranged in a subwavelength unit cell. Our detector realizes wideband photoresponse approaching the entire responsivity spectrum of the QWIP-single-sized square cavities can utilize only 60% of the possible bandwidth-and external quantum efficiencies of up to 78% at 6.8 µm. Our highly flexible design scheme enables integration of photodetectors and metasurfaces with arbitrary arrangements of cavities selectively responding to incidence with a specific wavefront.

4.
Nat Commun ; 11(1): 565, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992712

RESUMEN

Optical patch antennas sandwiching dielectrics between metal layers have been used as deep subwavelength building blocks of metasurfaces for perfect absorbers and thermal emitters. However, for applications of these metasurfaces for optoelectronic devices, wiring to each electrically isolated antenna is indispensable for biasing and current flow. Here we show that geometrically engineered metallic wires interconnecting the antennas can function to synchronize the optical phases for promoting coherent resonance, not only as electrical conductors. Antennas connected with optimally folded wires are applied to intersubband infrared photodetectors with a single 4-nm-thick quantum well, and a polarization-independent external quantum efficiency as high as 61% (responsivity 3.3 A W-1, peak wavelength 6.7 µm) at 78 K, even extending to room temperature, is demonstrated. Applications of synchronously wired antennas are not limited to photodetectors, but are expected to serve as a fundamental architecture of arrayed subwavelength resonators for optoelectronic devices such as emitters and modulators.

5.
ACS Omega ; 4(4): 7300-7307, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459829

RESUMEN

There is increasing demand for the ability to form ohmic contacts without lossy intermediate layers on both the top and bottom sides of metal-semiconductor-metal plasmoelectronic devices such as quantum cascade lasers and metasurface photodetectors. Although highly Si-doped n-GaAs surfaces can allow an ohmic contact without alloying, conditions for realizing nonalloyed ohmic contacts to other n-GaAs surfaces, originally buried inside but exposed by removing the substrate, have yet to be studied. We discovered that nonalloyed ohmic contacts to initially buried surfaces with a practically low contact resistivity down to 77 K can be realized by fulfilling certain requirements, specifically keeping the Si-doping concentration within a narrow range of 7.5 × 1018 to 1.25 × 1019 cm-3 and setting the growth temperature of the succeeding upper layers to a low value of 530 °C.

6.
Sci Technol Adv Mater ; 16(3): 035005, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27877806

RESUMEN

Packaged dual-band metasurface thermal emitters integrated with a resistive membrane heater were manufactured by ultraviolet (UV) nanoimprint lithography followed by monolayer lift-off based on a soluble UV resist, which is mass-producible and cost-effective. The emitters were applied to infrared CO2 sensing. In this planar Au/Al2O3/Au metasurface emitter, orthogonal rectangular Au patches are arrayed alternately and exhibit nearly perfect blackbody emission at 4.26 and 3.95 µm necessary for CO2 monitoring at the electric power reduced by 31%. The results demonstrate that metasurface infrared thermal emitters are almost ready for commercialization.

7.
Opt Express ; 21(23): 28198-218, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514332

RESUMEN

An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.


Asunto(s)
Electrones , Luz , Microscopía Electrónica de Rastreo/instrumentación , Imagen Óptica , Humanos , Luminiscencia
8.
Rev Sci Instrum ; 80(1): 016104, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19191465

RESUMEN

Micromanipulation techniques in a scanning electron microscope (SEM) have been utilized for assembling micrometer-sized structures. The precision of the assembled microstructures has been limited by the poor accuracy of the SEM image. We have developed a software to assist the operator in the accurate assembly of microstructures in a SEM, in which computer-generated outlines of the target structure [graphical templates (GTs)] are superimposed on the monitor. The displayed GTs are distorted on the basis of the image properties of the SEM evaluated in advance. As a consequence, the operator can construct microstructures with a high precision only by maneuvering the manipulator so that the outline of each object perfectly overlaps the GT without any alteration of the electron optics or circuits for improving the image accuracy.


Asunto(s)
Micromanipulación/instrumentación , Micromanipulación/métodos , Microscopía Electrónica de Rastreo/instrumentación , Microscopía Electrónica de Rastreo/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...