Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(4): e2853, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36995347

RESUMEN

Spatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity. Evaluating predictive ability, we found superior support for the temporal-landscape model, which showed a positive relationship between occupancy and pyrodiversity and interactions between habitat associations and years since fire. We incorporated the new temporal-landscape model into an RShiny application to make this decision-support tool accessible to decision-makers.


Asunto(s)
Ecosistema , Incendios , Animales , Animales Salvajes , Bosques , Aves
2.
PeerJ ; 8: e8898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32355574

RESUMEN

Landbird vital rates, such as productivity and adult survivorship, can be estimated by modeling mist-netting capture data. The proportion in which an adult breeding bird is 1 year of age (a "yearling"), however, has been studied only minimally in a few landbird species. Here we relate yearling proportion to habitat-structure covariates, including reclamation age, in a boreal forest landbird community. Data were collected at 35 constant-effort mist-netting stations over a 6-year period, and consisted of 12,714 captures of adults, of 29 landbird species, including 4,943 captures of yearlings. Accuracy of age determination (yearling or older) was assessed based on recapture data and error rates were estimated at a mean of 8.1% (range 0.0-19.4%) among the 29 species, with 20 species showing age-error rates <10%. The estimated mean yearling proportion was 0.407, ranging from 0.178 to 0.613 among species. Remote-sensed Enhanced Vegetation Index (EVI), a measure of habitat greenness, was positively correlated with age since reclamation up to 20 years, at which time it became comparable to that of natural stations. The probability of capturing a yearling for species associated with mature forest was lower at stations with higher EVI and the opposite was the case for species favoring successional habitats. These results suggest that yearling birds are being excluded from preferred breeding habitats by older birds through despotism and/or that yearlings are simply selecting poorer habitat due to lack of breeding experience or other factors. This dynamic appears to be operating in multiple species within this forest landbird community. Captured yearlings may also be "floaters", or non-breeding individuals not holding territories. However, presuming that yearlings show lower reproductive success whether floating or not, our results suggest that stations with high yearling proportions could be located within sink as opposed to source habitats. Overall, we infer that yearling proportion may become an important vital-rate measure of habitat quality and reclamation efforts, when combined with indices of population size, productivity, reproductive condition and survivorship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...