Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 174: 439-450, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113669

RESUMEN

The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.


Asunto(s)
Residuos de Alimentos , Administración de Residuos , Reproducibilidad de los Resultados , Redes Neurales de la Computación , Aprendizaje Automático
2.
Neural Comput Appl ; : 1-23, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37362565

RESUMEN

Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08606-w.

3.
BMC Genomics ; 23(1): 802, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471260

RESUMEN

BACKGROUND: Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. RESULTS: Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. CONCLUSION: This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Humanos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Infecciones por Acinetobacter/epidemiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Bangladesh/epidemiología , beta-Lactamasas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus
4.
Sci Rep ; 12(1): 16478, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183039

RESUMEN

In this paper, proposes a microwave brain imaging system to detect brain tumors using a metamaterial (MTM) loaded three-dimensional (3D) stacked wideband antenna array. The antenna is comprised of metamaterial-loaded with three substrate layers, including two air gaps. One 1 × 4 MTM array element is used in the top layer and middle layer, and one 3 × 2 MTM array element is used in the bottom layer. The MTM array elements in layers are utilized to enhance the performance concerning antenna's efficiency, bandwidth, realized gain, radiation directionality in free space and near the head model. The antenna is fabricated on cost-effective Rogers RT5880 and RO4350B substrate, and the optimized dimension of the antenna is 50 × 40 × 8.66 mm3. The measured results show that the antenna has a fractional bandwidth of 79.20% (1.37-3.16 GHz), 93% radiation efficiency, 98% high fidelity factor, 6.67 dBi gain, and adequate field penetration in the head tissue with a maximum of 0.0018 W/kg specific absorption rate. In addition, a 3D realistic tissue-mimicking head phantom is fabricated and measured to verify the performance of the antenna. Later, a nine-antenna array-based microwave brain imaging (MBI) system is implemented and investigated by using phantom model. After that, the scattering parameters are collected, analyzed, and then processed by the Iteratively Corrected delay-multiply-and-sum algorithm to detect and reconstruct the brain tumor images. The imaging results demonstrated that the implemented MBI system can successfully detect the target benign and malignant tumors with their locations inside the brain.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Microondas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Cabeza , Humanos , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...