Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
2.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337035

RESUMEN

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Vacunas , Cricetinae , Animales , Ratones , Linfocitos T CD8-positivos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Pan troglodytes
3.
Viruses ; 15(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005953

RESUMEN

mRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation. In contrast, adenovirus-based vaccines induce strong T cell responses and have been approved for intranasal delivery. To leverage the inherent strengths of both the mRNA and adenovirus platforms, we developed a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation. Specifically, we engineered adenoviral vectors integrating Tag/Catcher proteins at specific locales on the Ad capsid proteins, allowing us to anchor mRNA to the surface of engineered Ad viruses. In proof-of-concept studies, the Ad-mRNA platform successfully mediated mRNA delivery and could be optimized via the highly flexible modular design of both the Ad-mRNA and protein bioconjugation systems.


Asunto(s)
Adenoviridae , Vectores Genéticos , Vacunas de ARNm , Adenoviridae/genética , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vectores Genéticos/genética , Ingeniería Genética
4.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986823

RESUMEN

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

5.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37452494

RESUMEN

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Asunto(s)
Adenoviridae , Enfermedades Transmisibles , Ratones , Humanos , Animales , Adenoviridae/genética , Vectores Genéticos/genética , Terapia Genética/métodos , Proteínas Virales/genética , Linfocitos B
6.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205450

RESUMEN

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

8.
ACS Nano ; 16(7): 10443-10455, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35749339

RESUMEN

The capacity to efficiently deliver the gene-editing enzyme complex to target cells is favored over other forms of gene delivery as it offers one-time hit-and-run gene editing, thus improving precision and safety and reducing potential immunogenicity against edited cells in clinical applications. Here we performed a proof-of-mechanism study and demonstrated that a simian adenoviral vector for DNA delivery can be repurposed as a robust intracellular delivery platform for a functional Cas9/guide RNA (gRNA) complex to recipient cells. In this system, the clinically relevant adenovirus was genetically engineered with a plug-and-display technology based on SpyTag003/SpyCatcher003 coupling chemistry. Under physiological conditions, an off-the-shelf mixture of viral vector with SpyTag003 incorporated into surface capsid proteins and Cas9 fused with SpyCatcher003 led to a rapid titration reaction yielding adenovirus carrying Cas9SpyCatcher003 on the virus surface. The Cas9 fusion protein-conjugated viruses in the presence of a reporter gRNA delivered gene-editing functions to cells with an efficiency comparable to that of a commercial CRISPR/Cas9 transfection reagent. Our data fully validate the adenoviral "piggyback" approach to deliver an intracellularly acting enzyme cargo and, thus, warrant the prospect of engineering tissue-targeted adenovirus carrying Cas9/gRNA for in vivo gene editing.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Sistemas CRISPR-Cas/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Cápside/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo
9.
Cell Rep ; 36(4): 109452, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34289385

RESUMEN

SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/farmacología , Administración Intranasal/métodos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Ratones , Vacunación/métodos , Vacunas Virales/inmunología
10.
J Control Release ; 334: 106-113, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33872627

RESUMEN

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Asunto(s)
Adenoviridae , Anticuerpos de Dominio Único , Adenoviridae/genética , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética , Vectores Genéticos , Anticuerpos de Dominio Único/genética
11.
Heliyon ; 7(2): e06210, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615011

RESUMEN

Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.

12.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931734

RESUMEN

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Asunto(s)
Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Pandemias , Neumonía Viral/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Vacunas Virales/administración & dosificación
13.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102889

RESUMEN

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.


Asunto(s)
Adenoviridae/genética , Cápside/metabolismo , Vectores Genéticos , Gorilla gorilla/virología , Pulmón/metabolismo , Tropismo/inmunología , Infecciones por Adenoviridae/patología , Infecciones por Adenoviridae/virología , Adenovirus Humanos/genética , Animales , Proteínas de la Cápside/genética , Células Endoteliales , Expresión Génica , Terapia Genética , Hígado , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Estudios Seroepidemiológicos , Transducción Genética , Transgenes , Virión
14.
Mol Cancer Ther ; 19(3): 966-971, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31907220

RESUMEN

The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.


Asunto(s)
Adenoviridae/genética , Biomarcadores de Tumor/genética , Proteínas de la Cápside/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Neoplasias Renales/terapia , Neovascularización Patológica/terapia , Animales , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cell Rep ; 28(10): 2634-2646.e4, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484074

RESUMEN

The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD8+ T cell independent, and for GAd-Eecto requires the complement component C1q. Immunization of GAd-Zvp induces antibodies against a key neutralizing epitope on domain III of E protein and confers durable protection as evidenced by memory B and long-lived plasma cell responses and challenge studies 9 months later. In two models of ZIKV infection during pregnancy, GAd-Zvp prevents maternal-to-fetal transmission. The gorilla adenovirus-based vaccine platform encoding full-length prM and E genes is a promising candidate for preventing congenital ZIKV syndrome and possibly infection by other flaviviruses.


Asunto(s)
Adenoviridae/inmunología , Gorilla gorilla/virología , Inmunidad , Virus Zika/inmunología , Animales , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Femenino , Feto/patología , Feto/virología , Humanos , Memoria Inmunológica , Ratones Endogámicos C57BL , Embarazo , Linfocitos T/inmunología , Vacunas Virales/inmunología
16.
J Ovarian Res ; 12(1): 18, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767772

RESUMEN

BACKGROUND: Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS: We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS: Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.


Asunto(s)
Adenoviridae/genética , Modelos Animales de Enfermedad , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/terapia , Adenoviridae/fisiología , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Vectores Genéticos , Humanos , Ratones , Virus Oncolíticos/fisiología , Neoplasias Ováricas/virología , Proteínas Supresoras de Tumor/genética , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Control Release ; 298: 128-141, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30771412

RESUMEN

Hemophilia B (HB) is a life-threatening inherited disease caused by mutations in the FIX gene, leading to reduced protein function and abnormal blood clotting. Due to its monogenic nature, HB is one of the primary targets for gene therapy. Indeed, successful correction of HB has been shown in clinical trials using gene therapy approaches. However, application of these strategies to non-adult patients is limited due to high cell turnover as young patients develop, resulting in vector dilution and subsequent loss of therapeutic expression. Gene editing can potentially overcome this issue by permanently inserting the corrective gene. Integration allows replication of the therapeutic transgene at every cell division and can avoid issues associated with vector dilution. In this study, we explored adenovirus as a platform for corrective CRISPR/Cas9-mediated gene knock-in. We determined as a proof-of-principle that adenoviral delivery of CRISPR/Cas9 is capable of corrective gene addition, leading to long-term augmentation of FIX activity and phenotypic correction in a murine model of juvenile HB. While we found on-target error-free integration in all examined samples, some mice also contained mutations at the integration target site. Additionally, we detected adaptive immune responses against the vector and Cas9 nuclease. Overall, our findings show that the adenovirus platform is suitable for gene insertion in juveniles with inherited disease, suggesting this approach may be applicable to other diseases.


Asunto(s)
Adenoviridae/genética , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Hemofilia B/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Edición Génica/métodos , Técnicas de Sustitución del Gen , Vectores Genéticos , Hemofilia B/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Vaccine ; 36(20): 2799-2808, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29657070

RESUMEN

INTRODUCTION: Cellular and humoral immune responses are both involved in protection against Plasmodium infections. The only malaria vaccine available, RTS,S, primarily induces short-lived antibodies and targets only a pre-erythrocytic stage antigen. Inclusion of erythrocytic stage targets and enhancing cellular immunogenicity are likely necessary for developing an effective second-generation malaria vaccine. Adenovirus vectors have been used to improve the immunogenicity of protein-based vaccines. However, the clinical assessment of adenoviral-vectored malaria vaccines candidates has shown the induction of robust Plasmodium-specific CD8+ but not CD4+ T cells. Signal peptides (SP) have been used to enhance the immunogenicity of DNA vaccines, but have not been tested in viral vector vaccine platforms. OBJECTIVES: The objective of this study was to determine if the addition of the SP derived from the murine IgGκ light chain within a recombinant adenovirus vector encoding a multistage P. vivax vaccine candidate could improve the CD4+ T cell response. METHODS: In this proof-of-concept study, we immunized CB6F1/J mice with either the recombinant simian adenovirus 36 vector containing the SP (SP-SAd36) upstream from a transgene encoding a chimeric P. vivax multistage protein or the same SAd36 vector without the SP. Mice were subsequently boosted twice with the corresponding recombinant proteins emulsified in Montanide ISA 51 VG. Immunogenicity was assessed by measurement of antibody quantity and quality, and cytokine production by T cells after the final immunization. RESULTS: The SP-SAd36 immunization regimen induced significantly higher antibody avidity against the chimeric P. vivax proteins tested and higher frequencies of IFN-γ and IL-2 CD4+ and CD8+ secreting T cells, when compared to the unmodified SAd36 vector. CONCLUSIONS: The addition of the murine IgGκ signal peptide significantly enhances the immunogenicity of a SAd36 vectored P. vivax multi-stage vaccine candidate in mice. The potential of this approach to improve upon existing viral vector vaccine platforms warrants further investigation.


Asunto(s)
Inmunidad Celular , Inmunogenicidad Vacunal , Inmunoglobulina G/inmunología , Cadenas kappa de Inmunoglobulina/inmunología , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Señales de Clasificación de Proteína , Adenovirus de los Simios , Animales , Anticuerpos Antiprotozoarios/inmunología , Linfocitos T CD4-Positivos/inmunología , Vectores Genéticos , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
19.
Gene Ther ; 25(2): 139-156, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29588497

RESUMEN

Serum deficiency diseases such as alpha-1-antitrypsin deficiency are characterized by reduced function of serum proteins, caused by deleterious genetic mutations. These diseases are promising targets for genetic interventions. Gene therapies using viral vectors have been used to introduce correct copies of the disease-causing gene in preclinical and clinical studies. However, these studies highlighted that disease-alleviating gene expression is lost over time. Integration into a specific chromosomal site could provide lasting therapeutic expression to overcome this major limitation. Additionally, targeted integration could avoid detrimental mutagenesis associated with integrative vectors, such as tumorigenesis or functional gene perturbation. To test if adenoviral vectors can facilitate long-term gene expression through targeted integration, we somatically incorporated the human alpha-1-antitrypsin gene into the ROSA26 "safe harbor" locus in murine livers, using CRISPR/Cas9. We found adenoviral-mediated delivery of CRISPR/Cas9 achieved gene editing outcomes persisting over 200 days. Furthermore, gene knock-in maintained greater levels of the serum protein than provided by episomal expression. Importantly, our "knock-in" approach is generalizable to other serum proteins and supports in vivo cDNA replacement therapy to achieve stable gene expression.


Asunto(s)
Adenoviridae/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Complementario/genética , Técnicas de Sustitución del Gen , alfa 1-Antitripsina/genética , Animales , Edición Génica , Expresión Génica , Terapia Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Recombinación Genética , Integración Viral , Deficiencia de alfa 1-Antitripsina/genética
20.
Cancer Gene Ther ; 25(1-2): 27-38, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242639

RESUMEN

Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.


Asunto(s)
Adenoviridae , Células Dendríticas/inmunología , Vectores Genéticos , Vacunas , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Ratones , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Vacunas/genética , Vacunas/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...