Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 19(1): 623, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134926

RESUMEN

BACKGROUND: Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role. RESULTS: We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression. By localizing the Origin Recognition Complex (ORC) in the genome of the larval fat body and comparing this to ORC binding in the salivary gland, we found that sites of ORC binding show extensive tissue specificity. In contrast, there are common domains nearly devoid of ORC in the salivary gland and fat body that also have reduced density of ORC binding sites in diploid cells. Strikingly, domains lacking ORC can still be replicated in some polytene tissues, showing absence of ORC and origins is insufficient to repress replication. Analysis of the width and location of the URs with respect to ORC position indicates that whether or not a genomic region lacking ORC is replicated is controlled by whether replication forks formed outside the region are inhibited. CONCLUSIONS: These studies demonstrate that inhibition of replication fork progression can block replication across genomic regions that constitutively lack ORC. Replication fork progression can be inhibited in both tissue-specific and genome region-specific ways. Consequently, when evaluating sources of genome instability it is important to consider altered control of replication forks in response to differentiation.


Asunto(s)
Diferenciación Celular/genética , Estructuras Cromosómicas , Replicación del ADN/genética , Organogénesis/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/fisiología , Animales , Sitios de Unión , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Larva , Especificidad de Órganos/genética
2.
Elife ; 72018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29480805

RESUMEN

The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Fosforilación , Mapeo de Interacción de Proteínas
3.
G3 (Bethesda) ; 4(10): 1849-58, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25081981

RESUMEN

The Shugoshin (Sgo) protein family helps to ensure proper chromosome segregation by protecting cohesion at the centromere by preventing cleavage of the cohesin complex. Some Sgo proteins also influence other aspects of kinetochore-microtubule attachments. Although many Sgo members require Aurora B kinase to localize to the centromere, factors controlling delocalization are poorly understood and diverse. Moreover, it is not clear how Sgo function is inactivated and whether this is distinct from delocalization. We investigated these questions in Drosophila melanogaster, an organism with superb chromosome cytology to monitor Sgo localization and quantitative assays to test its function in sister-chromatid segregation in meiosis. Previous research showed that in mitosis in cell culture, phosphorylation of the Drosophila Sgo, MEI-S332, by Aurora B promotes centromere localization, whereas Polo phosphorylation promotes delocalization. These studies also suggested that MEI-S332 can be inactivated independently of delocalization, a conclusion supported here by localization and function studies in meiosis. Phosphoresistant and phosphomimetic mutants for the Aurora B and Polo phosphorylation sites were examined for effects on MEI-S332 localization and chromosome segregation in meiosis. Strikingly, MEI-S332 with a phosphomimetic mutation in the Aurora B phosphorylation site prematurely dissociates from the centromeres in meiosis I. Despite the absence of MEI-S332 on meiosis II centromeres in male meiosis, sister chromatids segregate normally, demonstrating that detectable levels of this Sgo are not essential for chromosome congression, kinetochore biorientation, or spindle assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Meiosis , Anafase , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Drosophila/genética , Masculino , Mutagénesis , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cromosomas Sexuales , Espermatocitos/metabolismo , Cohesinas
4.
Genes Dev ; 25(13): 1384-98, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21724831

RESUMEN

In metazoans, how replication origins are specified and subsequently activated is not well understood. Drosophila amplicons in follicle cells (DAFCs) are genomic regions that undergo rereplication to increase DNA copy number. We identified all DAFCs by comparative genomic hybridization, uncovering two new amplicons in addition to four known previously. The complete identification of all DAFCs enabled us to investigate these in vivo replicons with respect to parameters of transcription, localization of the origin recognition complex (ORC), and histone acetylation, yielding important insights into gene amplification as a metazoan replication model. Significantly, ORC is bound across domains spanning 10 or more kilobases at the DAFC rather than at a specific site. Additionally, ORC is bound at many regions that do not undergo amplification, and, in contrast to cell culture, these regions do not correlate with high gene expression. As a developmental strategy, gene amplification is not the predominant means of achieving high expression levels, even in cells capable of amplification. Intriguingly, we found that, in some strains, a new amplicon, DAFC-22B, does not amplify, a consequence of distant repression of ORC binding and origin activation. This repression is alleviated when a fragment containing the origin is placed in different genomic contexts.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Amplificación de Genes , Regulación de la Expresión Génica , Complejo de Reconocimiento del Origen/metabolismo , Acetilación , Animales , Drosophila melanogaster/citología , Histonas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
5.
Dev Cell ; 8(3): 435-42, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737938

RESUMEN

Although traditional organism-based mutational analysis is powerful in identifying genes involved in specific biological processes, limitations include incomplete coverage and time required for gene identification. Biochemical screens using cell transfection or yeast two-hybrid methods are rapid, but they are limited by cDNA library quality. The recent establishment of "uni-gene sets" has made it feasible to biochemically screen an organism's entire genome. Radiolabeled protein pools prepared from the Drosophila Gene Collection were used in a Drosophila in vitro expression cloning ("DIVEC") screen for substrates of PAN GU kinase, which is crucial for S-M embryonic cell cycles. Ablation of one identified substrate, Mat89Bb, by RNAi produces a polyploid phenotype similar to that of pan gu mutants. Xenopus embryos injected with Mat89Bb morpholinos arrest with polyploid nuclei, and Mat89Bb RNAi in HeLa cells gives rise to multinucleated cells. Thus, Mat89Bb plays an evolutionarily conserved role as a crucial regulator of both cell cycle and development.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/enzimología , Desarrollo Embrionario/fisiología , Genoma , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Clonación Molecular , Drosophila/embriología , Drosophila/enzimología , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Especificidad por Sustrato/genética , Xenopus/embriología , Xenopus/metabolismo
6.
Proc Natl Acad Sci U S A ; 99(17): 11217-22, 2002 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-12169670

RESUMEN

Animals and plants use modified cell cycles to achieve particular developmental strategies. In one common example, most animals and plants have tissues in which the cells become polyploid or polytene by means of an S-G cycle, but the mechanism by which mitosis is inhibited in the endo cycle is not understood. The Drosophila morula (mr) gene regulates variant cell cycles, because in addition to disrupting the archetypal cycle (G1-S-G2-M), mr mutations affect the rapid embryonic (S-M) divisions as well as the endo cycle (S-G) that produces polyploid cells. In dividing cells mr mutations cause a metaphase arrest, and endo cycling nurse cells inappropriately reenter mitosis in mr mutants. We show mr encodes the APC2 subunit of the anaphase promoting complex/cyclosome. This finding demonstrates that anaphase promoting complex/cyclosome is required not only in proliferating cells but also to block mitosis in some endo cycles. The mr mutants further indicate that transient mitotic functions in endo cycles change chromosome morphology from polytene to polyploid.


Asunto(s)
Ciclo Celular/fisiología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Ligasas/genética , Complejos de Ubiquitina-Proteína Ligasa , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Animales Modificados Genéticamente , División Celular/genética , División Celular/fisiología , Clonación Molecular , Drosophila/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Femenino , Ligasas/fisiología , Mitosis/fisiología , Datos de Secuencia Molecular , Mutagénesis , Sistemas de Lectura Abierta , Ovario/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...