Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 137(4): 245-253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336581

RESUMEN

In the practical scale of cyanobacterial cultivation, the golden algae Poterioochromonas malhamensis is a well-known predator that causes devastating damage to the culture, referred to as pond crash. The establishment and maintenance of monoculture conditions are ideal for large-scale cultures. However, this is a difficult challenge because microbial contamination is unavoidable in practical-scale culture facilities. In the present study, we unexpectedly observed the pond crash phenomenon during the pilot-scale cultivation of Synechococcus elongatus PCC 7942 using a 100-L photobioreactor. This was due to the contamination with P. malhamensis, which probably originated from residual fouling. Interestingly, we found that S.elongatus PCC 7942 can alter its morphological structure when subjected to continuous grazing pressure from predators, resulting in cells that were more than 100 times longer than those of the wild-type strain. These hyper-elongated S.elongatus PCC 7942 cells had mutations in the genes encoding FtsZ or Ftn2 which are involved in bacterial cell division. Importantly, the elongated phenotype remained stable during cultivation, enabling S.elongatus PCC 7942 to thrive and resist grazing. The cultivation of the elongated S.elongatus PCC 7942 mutant strain in a 100-L pilot-scale photobioreactor under non-sterile conditions resulted in increased cyanobacterial biomass without encountering pond crash. This study demonstrates an efficient strategy for cyanobacterial cell culture in practical-scale bioreactors without the need for extensive decontamination or sterilization of the growth medium and culture facility, which can contribute to economically viable cultivation and bioprocessing of microalgae.


Asunto(s)
Synechococcus , Synechococcus/genética , Ingeniería Celular , Mutación
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569445

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Rayos X , Ligandos , Dominios Proteicos , Fibras Musculares Esqueléticas/metabolismo
3.
Nat Commun ; 14(1): 730, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792917

RESUMEN

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Šresolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Regiones Antárticas , Complejo de Proteína del Fotosistema I/metabolismo , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo
4.
BioTech (Basel) ; 11(2)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35822782

RESUMEN

Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment-protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.

5.
J Gen Appl Microbiol ; 68(3): 151-162, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35650023

RESUMEN

A genetically modified (GM) strain of the diatom Chaetoceros gracilis expressing the phosphite dehydrogenase gene (ptxD), which is a useful gene both for the biological containment and the avoidance of microbial contamination, was characterized to estimate the risk against the biodiversity by laboratory experiments. GM strain could grow in the medium containing phosphite as a sole source of phosphorus, while its general characteristics such as growth, salt tolerance, heat and dehydration resistance in the normal phosphate-containing medium were equivalent to those of wild type (WT) strain. The increase in potential toxicity of GM strain against plant, crustacean, fish and mammal was also disproved. The dispersal ability of WT strain cultured in an outdoor raceway pond was investigated for 28 days by detecting the psb31 gene in vessels, settled at variable distances (between 5 and 60 m) from the pond. The diatom was detected only in one vessel placed 5 m apart. To estimate the influence on the environment, WT and GM strains were inoculated into freshwater, seawater and soil. The influence on the microbiome in those samples was assessed by 16S rRNA gene amplicon sequencing, in addition to the analysis of the survivability of those strains in the freshwater and the seawater. The results indicated that the effect to the microbiome and the survivability were comparable between WT and GM strains. All results showed that the introduction of the ptxD gene into the diatom had a low risk on biodiversity.


Asunto(s)
Diatomeas , Fosfitos , Animales , Diatomeas/genética , ARN Ribosómico 16S/genética , Biodiversidad , Medición de Riesgo , Mamíferos
6.
J Phys Chem B ; 126(22): 4009-4021, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35617171

RESUMEN

A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Clorofila/química , Clorofila A , Cianobacterias/metabolismo , Luz , Modelos Teóricos , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química
7.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34792189

RESUMEN

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Asunto(s)
Proteínas de Unión a Clorofila , Diatomeas , Clorofila A/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Filogenia , Xantófilas
8.
Nat Commun ; 12(1): 2333, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879791

RESUMEN

Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Complejo de Proteína del Fotosistema I/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clorofila/química , Clorofila/metabolismo , Microscopía por Crioelectrón , Cianobacterias/genética , Cianobacterias/metabolismo , Transporte de Electrón , Luz , Modelos Moleculares , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Electricidad Estática
9.
Nat Commun ; 11(1): 2481, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424145

RESUMEN

Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.


Asunto(s)
Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/ultraestructura , Transferencia de Energía , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Complejo de Proteína del Fotosistema I/ultraestructura , Unión Proteica , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
10.
Biochim Biophys Acta Bioenerg ; 1861(2): 148139, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825812

RESUMEN

An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.


Asunto(s)
Clorofila A/metabolismo , Chlorophyta/metabolismo , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Regiones Antárticas , Complejos de Proteína Captadores de Luz/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Espectrometría de Fluorescencia
11.
Biochem J ; 476(23): 3615-3630, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31738393

RESUMEN

Cyanobacteria are potentially useful photosynthetic microorganisms for bioremediation under oligotrophic environments. Here, the biphenyl degradation pathway genes of ß-proteobacterium Acidovorax sp. strain KKS102 were co-expressed in cyanobacterium Synechocystis sp. PCC6803 cells under control of the photo-inducible psbE promoter. In the KKS102 cells, biphenyl is dioxygenated by bphA1 and bphA2 gene products complex using electrons supplied from NADH via bphA4 and bphA3 gene products (BphA4 and BphA3, respectively), and converted to benzoic acid by bphB, bphC and bphD gene products. Unexpectedly, biphenyl was effectively hydroxylated in oligotrophic BG11 medium by co-expressing the bphA3, bphA1 and bphA2 genes without the bphA4 gene, suggesting that endogenous cyanobacteria-derived protein(s) can supply electrons to reduce BphA3 at the start of the biphenyl degradation pathway. Furthermore, biphenyl was converted to benzoic acid by cyanobacterial cells co-expressing bphA3, bphA1, bphA2, bphB, bphC and bphD. Structural gene-screening using recombinant Escherichia coli cells co-expressing bphA3, bphA1, bphA2, bphB and bphC suggested that petH, which encodes long- and short-type NADP-ferredoxin oxidoreductase isomers (FNRL and FNRS, respectively), and slr0600, which is annotated as an NADPH-thioredoxin reductase gene in CyanoBase, were BphA3-reducible proteins. Purified FNRL and FNRS, and the slr0600 gene product showed BphA3 reductase activity dependent on NADPH and the reduced form of glutathione, respectively, potentially shedding light on the physiological roles of the slr0600 gene product in cyanobacterial cells. Collectively, our results demonstrate the utility of Synechocystis sp. PCC6803 cells as a host for bioremediation of biphenyl compounds under oligotrophic environments without an organic carbon source.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Biodegradación Ambiental , Comamonadaceae/genética , Transporte de Electrón , Complejo III de Transporte de Electrones/metabolismo , Electrones , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Expresión Génica/efectos de la radiación , Hidroxilación , Luz , NADP/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Plásmidos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Reductasa de Tiorredoxina-Disulfuro/metabolismo
12.
Nat Plants ; 5(8): 890-901, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358960

RESUMEN

Light-harvesting antenna systems in photosynthetic organisms harvest solar energy and transfer it to the photosynthetic reaction centres to initiate charge-separation and electron-transfer reactions. Diatoms are one of the important groups of oxyphototrophs and possess fucoxanthin chlorophyll a/c-binding proteins (FCPs) as light harvesters. The organization and association pattern of FCP with the photosystem II (PSII) core are unknown. Here we solved the structure of PSII-FCPII supercomplexes isolated from a diatom, Chaetoceros gracilis, by single-particle cryoelectron microscopy. The PSII-FCPII forms a homodimer. In each monomer, two FCP homotetramers and three FCP monomers are associated with one PSII core. The structure reveals a highly complicated protein-pigment network that is different from the green-type light-harvesting apparatus. Comparing these two systems allows the identification of energy transfer and quenching pathways. These findings provide structural insights into not only excitation-energy transfer mechanisms in the diatom PSII-FCPII, but also changes of light harvesters between the red- and green-lineage oxyphototrophs during evolution.


Asunto(s)
Proteínas de Unión a Clorofila/metabolismo , Diatomeas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Metabolismo Energético , Conformación Proteica , Relación Estructura-Actividad
13.
Biosci Biotechnol Biochem ; 81(12): 2244-2252, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29098938

RESUMEN

A unique electron-accepting analog of vitamin K1 found in photosystem I in several species of oxygenic photosynthetic microorganisms was confirmed to be 5'-hydroxyphylloquinone (1) through stereo-uncontrolled synthesis. Furthermore, the stereochemistry of 1 obtained from Synechococcus sp. PCC 7942 was assigned to be 5'S using proline-catalyzed stereocontrolled reactions.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Vitamina K 1/análogos & derivados , Transporte de Electrón , Estereoisomerismo , Synechococcus/metabolismo , Vitamina K 1/química , Vitamina K 1/metabolismo
14.
Biotechnol Biofuels ; 9: 235, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822308

RESUMEN

BACKGROUND: Diatoms have attracted interest as biofuel producers. Here, the contents of lipids and photosynthetic pigments were analyzed in a marine centric diatom, Chaetoceros gracilis. This diatom can be genetically engineered using our previously reported transformation technique and has a potential to produce valuable materials photosynthetically. Sustainable culture conditions for cost-effective production of biological materials under autotrophic conditions with atmospheric carbon dioxide were investigated in the laboratory. A large-scale, open-air culture was also performed. RESULTS: Cell population doubling time was ~10 h under continuous illumination without CO2 enrichment, and large amounts of triacylglycerols (TAG) and fucoxanthin accumulated under a wide range of salinity and nutrient conditions, reaching ~200 and 18.5 mg/L, respectively. It was also shown that C. gracilis produced high amounts of TAG without the need for nitrogen or silica deprivation, which is frequently imposed to induce lipid production in many other microalgae. Furthermore, C. gracilis was confirmed to be highly tolerant to changes in environmental conditions, such as salinity. The diatom grew well and produced abundant lipids when using sewage water or liquid fertilizer derived from cattle feces without augmented carbon dioxide. High growth rates (doubling time <20 h) were obtained in a large-scale, open-air culture, in which light irradiance and temperature fluctuated and were largely different from laboratory conditions. CONCLUSIONS: The ability of this microalga to accumulate TAG without nutrient deprivation, which incurs added labor, high costs, and complicates scalability, is important for low-cost industrial applications. Furthermore, its high tolerance to changes in environmental conditions and high growth rates observed in large-scale, open-air culture implied scalability of this diatom for industrial applications. Therefore, C. gracilis would have great potential as a biofactory.

15.
Photosynth Res ; 126(2-3): 437-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26149177

RESUMEN

The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.


Asunto(s)
Diatomeas/metabolismo , Xantófilas/metabolismo , Proteínas Portadoras/metabolismo , Clorofila/metabolismo , Clorofila A , Diatomeas/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Espectrometría de Fluorescencia , Tilacoides/metabolismo
16.
Neurosci Res ; 101: 6-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26188126

RESUMEN

The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Densidad Postsináptica/ultraestructura , Proteolisis , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Hipoxia de la Célula , Células Cultivadas , Maleato de Dizocilpina/farmacología , Femenino , Glucosa/metabolismo , Masculino , N-Metilaspartato/farmacología , Densidad Postsináptica/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/fisiología
17.
Photosynth Res ; 123(2): 203-11, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25297896

RESUMEN

Chaetoceros gracilis belongs to the centric diatoms, and has recently been used in basic research on photosynthesis. In addition, it has been commercially used in fisheries and is also attracting interest as a feedstock for biofuels production and biorefinery. In this study, we developed an efficient genetic transformation system for C. gracilis. The diatom cells were transformed via multi-pulse electroporation using plasmids containing various promoters to drive expression of the nourseothricin acetyltransferase gene (nat) as a selectable marker. The transformation efficiency reached ~400 positive transgenic clones per 10(8) recipient cells, which is the first example of successful transformation with electroporation in a centric diatom species. We further produced two expression vectors: the vector pCgLhcr5p contains the light-dependent promoter of a fucoxanthin chlorophyll a/c binding protein gene and the vector pCgNRp contains the inducible promoter of a nitrate reductase gene to drive the expression of introduced genes. In both vectors, an acetyl-CoA acetyltransferase promoter drives nat gene expression for antibiotic selection. Stable integration and expression of reporter genes, such as the firefly luciferase and green fluorescent protein Azami-Green genes, were observed in transformed C. gracilis cells. This efficient and stable transformation system for C. gracilis will enable both functional analysis of diatom-specific genes and strain improvement for further biotechnological applications.


Asunto(s)
Diatomeas/genética , Transformación Genética , Diatomeas/efectos de los fármacos , Diatomeas/fisiología , Farmacorresistencia Microbiana/genética , Electroporación , Regulación de la Expresión Génica , Vectores Genéticos , Plásmidos/genética , Estreptotricinas/farmacología
18.
Plant Physiol ; 166(1): 337-48, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056923

RESUMEN

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.


Asunto(s)
Chlorophyta/fisiología , Líquenes/fisiología , Nostoc commune/fisiología , Simbiosis , Agua/fisiología , Líquenes/microbiología , Presión Osmótica , Fotosíntesis
19.
Photosynth Res ; 117(1-3): 245-55, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23812785

RESUMEN

A divinyl chlorophyll (DV-Chl) a harboring mutant of Synechocystis sp. PCC 6803, in which chlorophyll species is replaced from monovinyl(normal)-Chl a to DV-Chl a, was characterized. The efficiency of light utilization for photosynthesis was decreased in the mutant. Absorption spectra at 77 K and their fourth derivative analyses revealed that peaks of each chlorophyll forms were blue-shifted by 1-2 nm, suggesting lowered stability of chlorophylls at their binding sites. This was also true both in PSI and PSII complexes. On the other hand, fluorescence emission spectra measured at 77 K were not different between wild type and the mutant. This indicates that the mode of interaction between chlorophyll and its binding pockets responsible for emitting fluorescence at 77 K is not altered in the mutant. P700 difference spectra of thylakoid membranes and PSI complexes showed that the spectrum in Soret region was red-shifted by 7 nm in the mutant. This is a characteristic feature of DV-Chl a. Microenvironments of iron-sulfur center of a terminal electron acceptor of PSI complex, P430, were practically the same as that of wild type.


Asunto(s)
Clorofila/metabolismo , Mutación/genética , Synechocystis/metabolismo , Compuestos de Vinilo/metabolismo , Clorofila/química , Electrones , Proteínas Hierro-Azufre/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Espectrometría de Fluorescencia , Tilacoides/metabolismo , Compuestos de Vinilo/química
20.
Plant Cell Physiol ; 54(8): 1316-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23737501

RESUMEN

Lichens are drought-resistant symbiotic organisms of mycobiont fungi and photobiont green algae or cyanobacteria, and have an efficient mechanism to dissipate excess captured light energy into heat in a picosecond time range to avoid photoinhibition. This mechanism can be assessed as drought-induced non-photochemical quenching (d-NPQ) using time-resolved fluorescence spectroscopy. A green alga Trebouxia sp., which lives within a lichen Ramalina yasudae, is one of the most common green algal photobionts. This alga showed very efficient d-NPQ under desiccation within the lichen thallus, whereas it lost d-NPQ ability when isolated from R. yasudae, indicating the importance of the interaction with the mycobiont for d-NPQ ability. We analyzed the water extracts from lichen thalli that enhanced d-NPQ in Trebouxia. Of several sugar compounds identified in the water extracts by nuclear magnetic resonance (NMR), mass spectrometry (MS) and gas chromatography (GC) analyses, only d-arabitol recovered d-NPQ in isolated Trebouxia to a level similar to that detected for R. yasudae thallus. Other sugar compounds did not help the expression of d-NPQ at the same concentrations. Thus, arabitol is essential for the expression of d-NPQ to dissipate excess captured light energy into heat, protecting the photobiont from photoinhibition. The relationship between mycobionts and photobionts is, therefore, not commensalism, but mutualism with each other, as shown by d-NPQ expression.


Asunto(s)
Ascomicetos/fisiología , Chlorophyta/fisiología , Líquenes/fisiología , Alcoholes del Azúcar/metabolismo , Simbiosis , Clorofila/metabolismo , Chlorophyta/efectos de la radiación , Desecación , Fluorescencia , Líquenes/microbiología , Líquenes/efectos de la radiación , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...